本机配置的caffe使用的是cudnn5,但是tensorflow1.3需要cudnn6,由此经常需要更换cudnn版本,目前没有找到安装两个cudnn版本的方法。但是存在安装两个cuda版本的方法,即一个cuda8.0配合cudnn5,一个cuda9.0配合cudnn7,具体配置见博客https://blog.csdn.net/tunhuzhuang1836/article/details/79545625,此方法虽然可行,但我担心会给环境带来意向不到的后果,因为cuda比cudnn更偏向低层。于是,本机没有使用两个cuda版本,而是选择替换cudnn的版本使用。
查看cuda版本
cat /usr/local/cuda/version.txt
查看cudnn版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
切换cudnn版本
删除原来的cudnn
sudo rm -rf /usr/local/cuda/include/cudnn.h
sudo rm -rf /usr/local/cuda/lib64/libcudnn*
在要使用的cudnn版本文件夹下,复制新的cudnn到相应目录并更改权限
sudo cp cudnn/include/cudnn.h /usr/local/cuda/include
sudo cp cudnn/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
配置好cudnn后,可以使用Python的虚拟环境来配置包
注意虚拟环境下不能使用tensorflow的GPU版本,比较尴尬。
安装:
pip install virtualenv
pip install virtualenvwrapper
添加环境变量:
export WORKON_HOME=~/dataDisk/Envs
source /usr/local/bin/virtualenvwrapper.sh
source ~/.bashrc #读入配置文件,立即生效
第一行:virtualenvwrapper存放虚拟环境目录
第二行:virtrualenvwrapper会安装到python的bin目录下,所以该路径是python安装目录下bin/virtualenvwrapper.sh
virtualenvwrapper基本使用
1.创建虚拟环境 mkvirtualenv
mkvirtualenv venv
这样会在WORKON_HOME变量指定的目录下新建名为venv的虚拟环境。
若想指定python版本,可通过"--python"指定python解释器
mkvirtualenv --python=/usr/bin/python3.5 CRNN
mkvirtualenv --python=/usr/bin/python2.7 CTPN
2. 基本命令
查看当前的虚拟环境目录
[root@localhost ~]# workon
venv
CRNN
CTPN
切换到虚拟环境
[root@localhost ~]# workon CRNN
(CRNN) [root@localhost ~]#
退出虚拟环境
(CRNN) [root@localhost ~]# deactivate
[root@localhost ~]#
删除虚拟环境
rmvirtualenv venv