python虚拟环境的使用

本文介绍了如何在不使用两个CUDA版本的情况下,通过切换CUDNN版本来适应不同项目需求。详细步骤包括查看CUDA和CUDNN版本、删除旧版本及复制新版本到相应目录。同时强调在Python虚拟环境中配置包时,由于限制无法使用Tensorflow的GPU版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本机配置的caffe使用的是cudnn5,但是tensorflow1.3需要cudnn6,由此经常需要更换cudnn版本,目前没有找到安装两个cudnn版本的方法。但是存在安装两个cuda版本的方法,即一个cuda8.0配合cudnn5,一个cuda9.0配合cudnn7,具体配置见博客https://blog.csdn.net/tunhuzhuang1836/article/details/79545625,此方法虽然可行,但我担心会给环境带来意向不到的后果,因为cuda比cudnn更偏向低层。于是,本机没有使用两个cuda版本,而是选择替换cudnn的版本使用。

查看cuda版本

cat /usr/local/cuda/version.txt

查看cudnn版本

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

切换cudnn版本

删除原来的cudnn

sudo rm -rf /usr/local/cuda/include/cudnn.h

sudo rm -rf /usr/local/cuda/lib64/libcudnn*

在要使用的cudnn版本文件夹下,复制新的cudnn到相应目录并更改权限

sudo cp cudnn/include/cudnn.h /usr/local/cuda/include

sudo cp cudnn/lib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

 

配置好cudnn后,可以使用Python的虚拟环境来配置包

注意虚拟环境下不能使用tensorflow的GPU版本,比较尴尬。

安装:

pip install virtualenv
pip install virtualenvwrapper

添加环境变量:

export WORKON_HOME=~/dataDisk/Envs
source /usr/local/bin/virtualenvwrapper.sh
source ~/.bashrc   #读入配置文件,立即生效

       第一行:virtualenvwrapper存放虚拟环境目录

  第二行:virtrualenvwrapper会安装到python的bin目录下,所以该路径是python安装目录下bin/virtualenvwrapper.sh

 

virtualenvwrapper基本使用

1.创建虚拟环境 mkvirtualenv

mkvirtualenv venv   

  这样会在WORKON_HOME变量指定的目录下新建名为venv的虚拟环境。

  若想指定python版本,可通过"--python"指定python解释器

mkvirtualenv --python=/usr/bin/python3.5 CRNN
mkvirtualenv --python=/usr/bin/python2.7 CTPN

2. 基本命令  

  查看当前的虚拟环境目录

[root@localhost ~]# workon
venv
CRNN
CTPN

  切换到虚拟环境

[root@localhost ~]# workon CRNN
(CRNN) [root@localhost ~]# 

  退出虚拟环境

(CRNN) [root@localhost ~]# deactivate
[root@localhost ~]# 

  删除虚拟环境

rmvirtualenv venv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值