大模型真的像人一样“思考”和“理解”吗?​

Yann LeCun 新研究的核心探讨:大语言模型(LLM)的“理解”和“思考”方式与人类认知的根本差异。

核心问题:大模型真的像人一样“思考”和“理解”吗?

人类的思考方式: 你的大脑是个超级整理师。面对海量信息(比如看到无数种鸟),它会自动把相似的东西归类(都叫“鸟类”),并且还能区分哪些是“典型代表”(比如知更鸟很“鸟样”),哪些不那么典型(比如企鹅虽然也是鸟,但不像“典型鸟”)。这种能力让我们既能高效处理信息,又能抓住微妙的细节和语境。

大模型(LLM)的“思考”方式: LLM 更像是一个超级文本统计员。它通过“啃”了网上天文数字的文本数据,学会了词语之间复杂的统计关联模式。它能把词语在数学空间里排布(词嵌入),让意思相近的词靠得近。但它是否真的“理解”这些词背后像人类一样的概念呢?LeCun 的新研究说:本质不同!

研究怎么证明的?用了信息论的“尺子”

研究者们搬来了信息论里的两把“尺子”:

  • 速率-失真理论: 衡量一个系统在“压缩信息”(省空间,减少废话)和“保留意义”(不失真,保持原意)之间如何取舍。
  • 信息瓶颈原理: 核心也是找到压缩信息和保留关键信息的最佳平衡点。

他们用这把“尺子”量了:

  • 人类数据: 经典的心理学实验数据,真实记录人类如何分类和判断典型性(比如为什么觉得知更鸟比企鹅更像鸟)。
  • 大模型数据: 分析了好几个主流大模型(BERT, Llama, Gemma, Qwen 等)的内部词嵌入结构。

发现了什么关键差异?三大核心结论

1. AI 会“分大类”,但不会“品细节”:

  • 好的一面: LLM 在大的分类任务上表现不错,能把“鸟”和“家具”分清楚。小模型(如 BERT)有时还比大模型分得好点。这说明 AI 能抓住一些宏观的、统计上的相似性。
  • 坏的一面: 但在判断“哪个更像典型代表”这种细微语义差别上,LLM 就懵了。它搞不懂为什么人类觉得“知更鸟”比“企鹅”更像鸟。这说明 AI 的“理解”是表面的、缺乏人类那种基于丰富经验和感官的细腻认知。

2. AI 和人类的“目标”背道而驰:

  • AI 是“极致压缩狂”: LLM 在内部处理信息时,首要目标是拼命压缩!它想把所有信息用最精简、最高效(信息论意义上)的方式表达,极力消除冗余。代价是牺牲了对细节、微妙含义和语境的敏感性。
  • 人类是“细节保留者”: 人脑的概念系统更注重适应性和丰富性。我们愿意多花点“内存”,保留更多细节和上下文信息,即使这样压缩效率低点也没关系。这让我们能灵活应对复杂多变的世界。

3. 模型越大,不一定越像人:

  • 研究发现,单纯把模型做得更大(堆参数),并不能让它变得更像人类那样思考。
  • 模型的结构和训练目标更重要: 比如 BERT(一种主要用于理解文本而非生成文本的模型)在某些任务上反而比一些更大的生成模型表现得在某些方面更接近人类的数据模式。这说明如何设计模型(架构和目标)比单纯追求规模更能影响它是否“类人”。

差异在哪?意味着什么?

差异本质: LLM 的“理解”是基于海量文本数据的统计模式学习和极致信息压缩。人类的认知则是基于多感官经验、形成有结构的概念(能分大类也能抓典型)、并保留丰富细节以适应环境。

为什么 LLM 对话流畅却不像人? LLM 的压缩能力让它能高效关联词语,生成流畅文本,但这建立在牺牲对细微语义、语境、真实世界经验的深度理解上。

对 AI 发展的启示:

  • 追求“智能”不能只靠堆数据和算力(更大更强),更要思考什么样的智能结构能更好地服务于人类需求。
  • 也许 AI 不必、也很难完全模仿人类思维。承认并利用这种差异,设计互补型的人机协作,可能是更有前景的方向。比如 AI 负责高效压缩、检索信息,人类负责理解深层含义、做出价值判断。

大模型能聊天,但它的“脑回路”和人类根本不一样!它擅长压缩信息找关联,却不懂为什么知更鸟比企鹅更“鸟样”。想让它更“聪明”,光堆参数不行,得改变设计思路,而且不必强求它像人。

### 回答1: PDR指的是Prediction-driven Response,它是一种基于预测的回应模型,该模型根据它们输入的上下文生成回应。P2DR是Predictive Two-Dimensional Response,它在PDR的基础上进一步改进,通过增加输入输出的变量,使模型能够更有效地生成回应。PDR2P2DR2是PDRP2DR的进一步改进,它们引入了更多的输入变量以加强模型的表现。WPDRRC(Word-based Prediction-driven Response Retrieval and Completion)是一种基于字的预测驱动响应检索完成模型,它通过将文本拆分成单独的单词,来解决长文本的回应生成问题。这些模型的发展表明,通过引入更多的输入变量,可以有效地提高模型的性能,并更好地处理长文本的回应生成问题。 ### 回答2: PDR,即Problem Definition and Representation(问题定义表示),是指将问题明确定义,并进行合适的表示方法,以便进行问题求解。 P2DR,即Problem Definition and Domain Representation(问题定义领域表示),是在PDR的基础上,将问题定义表示与具体领域相结合,以便更准确地描述问题。 PDR2,即Problem Definition, Domain Representation, and Reasoning(问题定义,领域表示推理),是在P2DR的基础上,增加了推理的过程,以便对问题进行更深入的分析解决。 P2DR2,即Problem Definition, Domain Representation, Reasoning and Resolution(问题定义,领域表示,推理解决),是在PDR2的基础上,增加了问题解决的过程,以便提供完整的问题解决方案。 WPDRRC,即Widely-Applicable P2DR2-based Resolution and Reasoning Cycle(广泛适用的基于P2DR2的解决推理循环),是对P2DR2模型的扩展改进,以便在多个领域情境下应用。 这些模型的发展说明了们对问题求解过程的不断探索改进。从最初的PDR到P2DR、PDR2、P2DR2以及最后的WPDRRC,每个模型都在上一个模型的基础上添加了新的内容功能,以适应不同领域情境的问题求解需求。 这些模型的发展也反映了们对问题求解过程的深入理解认识。通过不断完善问题的定义、表示、推理解决等环节,模型能够更好地支持问题分析解决。 另外,WPDRRC的出现表明们希望能够提供更广泛适用的问题解决方案。这一模型通过扩展P2DR2,使得其能够在多个领域情境下应用,从而更好地满足来自不同领域的问题求解需求。 ### 回答3: PDR(Plan-Do-Review)是一种学习问题解决的模型,它由计划、实施回顾三个环节组成。在计划阶段,我们设立目标、制定计划安排资源。在实施阶段,我们按照计划行动并收集数据。在回顾阶段,我们评估结果,总结经验教训,并提出改进措施。 P2DR(Plan-Do-Data-Discussion-Review)是对PDR模型的扩展,它增加了“数据”“讨论”两个环节。在数据阶段,我们收集、整理分析数​​据以获取更深入的了解。在讨论阶段,我们与团队成员或其他利益相关方共同讨论解释数据。这样可以更全面地评估问题制定改进计划。 PDR2(Plan-Do-Review-Reflect)是对PDR模型的进一步补充,强调了“反思”。在反思阶段,我们思考并洞察问题的深层次原因解决方案。通过反思,我们能够更好地了解个团队的偏见局限性,并借鉴经验教训,提高问题解决的效果。 P2DR2(Plan-Do-Data-Discussion-Review-Reflect)整合了P2DRPDR2的部分内容,提供了一个更全面、系统的问题解决模型。它强调数据分析反思过程,有助于更深入地探索问题,并在问题解决过程中形成良好的学习改进循环。 WPDRRC(Why-Plan-Do-Review-Reflect-Revise-Communicate)是一个以“为什么”为开头的问题解决模型。它强调在解决问题之前要先理解问题的原因动机。通过这个模型,我们能够更深入地挖掘问题的根本原因,并在制定计划、行动、回顾、反思、修改沟通过程中实现问题解决持续改进。 这些模型的发展说明了问题解决持续改进的复杂性重要性。它们提供了一套结构化的方法工具,帮助们在解决问题改进绩效方面更加高效有追求。这些模型的使用可以帮助组织建立优良的学习改进文化,从而提升组织的竞争力的职业发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frostmelody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值