这个春节,国产AI模型DeepSeek彻底火了!
网友们脑洞大开,用它来写春联、做寒假作业、预测春节档票房、写旅游攻略……个个丝滑流畅,玩得不亦乐乎!
自1月20日DeepSeek-R1模型横空出世后,仅用不到一周时间就陆续登顶苹果App Store和谷歌Play Store全球下载榜首。这款应用在发布后的前18天内下载量达到1600万次,几乎是ChatGPT首次发布时900万次的两倍。这把“火”也直接烧疼了硅谷,让美股科技板块、英伟达股价大跌,老黄都坐不住了。
最近几天,百度智能云、华为云、阿里云、腾讯云、360数字安全等平台也纷纷接入了DeepSeek大模型。以往想用ChatGPT的小伙伴苦于没有渠道,不妨试试国产DeepSeek!然而,你在使用过程中是不是经常看到“服务器繁忙,请稍后再试”?那该如何解决呢?一起跟随我一起去本地部署一个吧!
本地部署,开源大模型本地部署的好处有以下几点:
• 更稳定更快地响应速度:本地部署减少了对网络连接的依赖,避免了因网络延迟导致的响应速度下降
• 模型可控性:根据自身需求对模型进行定制和优化,提高模型的适用性和性能。
• 数据安全:在本地环境中处理数据,避免了将敏感信息上传至云端,降低了数据泄露的风险。
• 成本控制:无限使用,无需支付云服务的订阅费用,可降低使用成本。
• 灵活性:可以自由选择和切换不同的模型,满足多样化的应用需求。
• 离线运行:在本地部署好以后,就算是没有网络,也可以使用。
1、运行配置需求
如果电脑的显存不达标,就需要量化来减少显存的需求。比如你的电脑是 8GB,想用 7b 参数的模型,就需要量化,量化后,就可以使用 7b 的大模型了。这是各个显卡型号的显存大小, 可以参考下。
下面是大模型给的,运行 DeepSeek 模型显卡和 MacOS 运行内存的需求,一会儿下载的时候,小伙伴可以根据自己电脑的配置,来选择下载哪一个大小的模型。
模型大小 | 显存需求(FP16推理) | 显存需求(INT8推理) | 推荐显卡 | MacOS需要的RAM |
1.5b | 3GB | 2GB | RTX 2060/MacGPU 可运行 | 8GB |
7b | 14GB | 10GB | RTX 3060 12GB/4070 Ti | 16GB |
8b | 16GB | 12GB | RTX 4070/MacGPU 高效运行 | 16GB |
14b | 28GB | 20GB | RTX 4090/A100-40G | 32GB |
32b | 64GB | 48GB | A100-80G/2xRTX4090 | 64GB |
如何查看自己电脑的配置,这里以 Windows11 为例,鼠标移动到任务栏处,鼠标右键,就会出现两个选项。
然后点击「任务管理器」,选择第二个「性能」图标,这里就能看到你电脑的配置,有 CPU、内存、磁盘、网络、GPU 等。
点击 GPU 窗口,「专用 GPU 内存」对应的上表需求就是「显存」,小伙伴们看到「显存」大小以后,下载对应的模型就可以了,不建议下载超过所需显存的模型,否则会非常卡,甚至崩溃!!!
2.安装下载工具及模型
• 我们在部署本地大模型的时候,需要有第三方的工具来承接,比如插件、终端、桌面端,这里就拿几个经典的工具举个例子,LM Studio 、Chatbox AI 和 Ollama。
• 为什么需要第三方软件来做承接,因为开源大模型,他不是应用程序或者 App,双击或者安装好就可以运行的,需要第三方的平台来作为中转。
• 比如你下载的大模型就是一块生肉,第三方平台就像是一个烤箱,可以加热肉,然后食用,如果没有第三方平台承接,你得自己找锅、开火、调温度,还可能把肉烤糊,很麻烦!
• 然后每个第三方平台都有各自的优势,这里说说区别, LM Studio、Chatbox AI 提供图形化界面,操作简便,适合初学者和非技术用户;而 Ollama 依赖命令行操作,适合有技术背景的用户。
• 这篇是小白指南篇,我们都来操作一遍,先讲一下 Ollama+Chatbox AI 网页版需要设置网络环境,后续部署私人知识库也会用到,LM Studio + 魔搭社区不需要设置环境,且有量化模型。
• 看大家的选择,小白推荐 LM Studio + 魔搭社区这个搭配。
(1)Ollama 介绍
简单来说,Ollama 可以让你在自己的电脑上轻松运行 AI 语言模型,无需连接云端或配置复杂环境。它的优点如下:
• 简单易用:安装好 Ollama 后,即可在本地运行 AI 模型,无需额外配置。
• 支持离线使用:无需联网,即可使用 AI 功能,确保数据隐私安全。
• 兼容不同系统:支持 Windows、Mac 和 Linux 系统,跨平台运行。
• 多种 AI 模型可用:可以下载并运行多种 AI 语言模型,如 DeepSeek、Llama 等。
• 适合开发者和普通用户:开发者可以用它训练或微调 AI 模型,普通用户也能用于聊天、写作、翻译等。
(2)下载 Ollama
进入官网:Ollama,页面上会有一些提示信息。一定要仔细看看,确认页面上是不是有个可爱的“羊驼”🦙标志。如果不是,那可能就进入错了地址哦!确认无误后,接着点击页面下方的「Download」按钮,就可以开始下载啦!
在下载页面,根据自己电脑的操作系统进行选择。我的电脑是Windows系统,所以我直接点击了「Download For Windows」按钮,然后就可以顺利下载啦!
下载完成后,找到下载文件夹,定位到刚刚下载的Ollama安装文件。你会看到一个带有“羊驼”图标🦙的文件,双击它就可以开始安装啦!
点击「Install」按钮开始安装。安装程序会自动将Ollama安装到C盘,安装过程中无法更改磁盘位置。如果需要安装到其他位置,可以在安装完成后手动更改。
安装完成后,桌面不会自动生成图标哦。不用担心,你可以点击桌面右下角的任务栏箭头,展开隐藏的图标栏,就能看到Ollama已经在运行啦!
(3)更改磁盘
在下载大模型之前,建议先修改Ollama下载模型的默认位置,因为Ollama默认将模型文件保存在C盘,容易导致C盘空间不足。以下是修改模型位置的具体步骤:
第一步,快捷键 Win+S 搜索 「高级系统设置」并点击「高级系统设置」
第二步,点击「高级」栏目下的「环境变量」
在弹出的界面中,第三步是点击下方的「新建」按钮。
接着,在弹出的对话框中,变量名输入「OLLAMA_MODELS」(这一步一定要准确无误)。然后点击「浏览目录」按钮,选择你打算存放模型的磁盘,最好是固态硬盘(SSD),因为它的读写速度快,能提升模型运行效率。
选好磁盘后,点击「新建目录」按钮,输入文件夹名字,比如「ollama_models」(文件夹名字可以随意取)。设置完成后,点击「确定」按钮即可!
由于Ollama程序默认安装在C盘,而C盘很容易空间不足,所以需要手动将相关文件夹移到其他磁盘,比如D盘。具体操作如下:首先,在你选择的磁盘(最好是固态SSD)上创建一个文件夹,我这里创建了一个名为「Ollama」的文件夹,然后在这个「Ollama」文件夹里再创建3个子文件夹。
在创建的「Ollama」文件夹中,需要设置三个子文件夹:一个用于存放程序文件(比如命名为「exe」),一个用于存放日志文件(比如命名为「logs」),还有一个用于存放大模型文件(必须命名为「models」,因为之前已经设置了环境变量)。
除了「models」文件夹的名称不能更改外,其他两个文件夹的名字可以根据你的喜好随意命名,只要你自己清楚每个文件夹的用途就行。
接下来,找到Ollama默认的安装文件夹(通常在C盘),将里面的所有内容复制到刚刚创建的对应文件夹中。
C:\Users\Administrator\.ollama 是 Ollama 用来放大模型的文件夹
C:\Users\Administrator\AppData\Local\Ollama 是 Ollama 用来日志的文件夹
C:\Users\Administrator\AppData\Local\Programs\Ollama 是 Ollama 的程序文件夹
在将这些文件夹的内容转移到新的位置后,一定要记得删除C盘上原来的文件夹。否则,在后续操作中可能会遇到报错,比如提示“文件已存在”或“路径冲突”等问题,这会影响后续的安装或设置流程。
好的!为了确保程序运行不受影响,同时避免C盘空间被占用,我们可以使用「软连接」来解决这个问题。软连接可以被理解为一种“快捷方式”,它允许我们在不同的路径下访问同一个文件或目录,而不会占用额外的存储空间。
通过创建软连接,我们可以让程序仍然“认为”文件还在C盘,但实际上它们已经被移动到了其他磁盘位置。这样既节省了C盘空间,又保证了程序的正常运行。
软连接的作用如下:
• 类似快捷方式:就像Windows中的快捷方式一样,点击一下就能直接打开真正的文件或文件夹。
• 不占用额外空间:不会复制文件本身,只是创建一个“指路牌”,告诉系统文件的实际位置。
• 可以跨盘符:可以将C盘的文件或文件夹“指向”D盘、E盘,甚至网络上的文件夹,而硬链接无法做到这一点。
• 避免重复存储:多个程序或用户都可以通过软连接访问同一个文件,避免了重复拷贝文件,节省存储空间。
• 可能失效:如果目标文件被删除或移动,软连接就会失效,就像快捷方式指向的文件被删除后无法打开一样。
这里要用到「命令提示符」窗口,使用快捷键 Win + R 调出「运行」,输入「cmd」,调出「命令提示符」窗口,输入下列这三行指令:
mklink /D C:\users\Administrator\.ollama D:\Ollama\models
mklink /D C:\users\Administrator\AppData\Local\Ollama D:\Ollama\logs
mklink /D C:\users\Administrator\AppData\Local\Programs\Ollama D:\Ollama\exe
如果出现「权限」提示,用「管理员模式」运行「命令提示符」。右键点击「命令提示符」,选择 「以管理员身份运行」,就可以解决。
命令行解释如下:
mklink /D C:\users\Administrator\.ollama D:\Ollama\models
mklink:Windows 创建链接的命令。
• /D:表示创建目录(文件夹)的软连接。
• C:\users\Administrator\.ollama:这是要创建的软链接路径,也就是“快捷方式”的位置。
• D:\Ollama\models:这是目标文件夹,即实际存储数据的目录。
这条指令的作用:
• 任何对 C:\users\Administrator\.ollama 的访问操作,实际上都会被重定向到 D:\Ollama\models 目录中。也就是说,你在 C:\users\Administrator\.ollama 里查看、修改或删除文件时,这些操作其实是在 D:\Ollama\models 里完成的。
• 这个软链接可以让软件或脚本误以为 .ollama 目录还在C盘,但实际上数据已经存储在D盘上了,从而节省C盘空间。
适用场景:
• 节省C盘空间:如果 C:\users\Administrator\.ollama 目录占用空间过大,你可以把它移到D盘,然后通过软链接让系统误以为它还在C盘。
• 跨盘访问:Ollama可能会默认在 C:\users\Administrator\.ollama 存储模型数据,但你可以通过软链接把它放到D盘,避免占用C盘空间。
• 兼容性:某些应用或脚本可能要求 .ollama 目录必须在 C:\users\Administrator,但你可以通过软链接把它存到D盘,绕开这个限制。
如果觉得有点复杂,不用担心,直接按照步骤执行就行!
完成软链接设置后,你可以去对应的文件夹查看一下。比如在放大模型的文件夹(比如 C:\users\Administrator\.ollama),你会看到一个带有快捷方式图标的小文件夹。点击这个文件夹,就能直接访问实际存储在D盘(比如 D:\Ollama\models)的大模型文件啦!
好的!现在「软连接」已经设置好了,你可以用同样的方法把其他占空间的软件文件夹也转移到其他磁盘,再也不用担心C盘空间不足啦。
接下来,顺便检查一下Ollama是否安装成功。在「命令提示符」窗口中输入以下命令:ollama -v
注意:-v 和 ollama 之间有一个空格,-v 之后不需要再加任何内容。
如果安装成功,命令提示符会显示Ollama的版本信息,这样就说明一切正常啦!
如果在「命令提示符」窗口中输入 ollama -v 后,显示的是类似「ollama version is xxx」的信息,那就说明Ollama安装成功啦!你可以放心使用啦。
(4)下载模型
要下载大模型,可以打开Ollama官网:Ollama,然后点击页面上方的「Models」按钮。
打开Ollama官网后,你会发现不仅有DeepSeek模型,还有很多其他模型可供选择。如果你对其他模型感兴趣,也可以尝试下载和部署。不过,这里我们以DeepSeek-r1为例来进行部署。
选择好适合你显存的模型参数后,页面上会有一个复制按钮,点击它就可以将对应的命令复制到剪贴板啦。
复制好命令后,回到「命令提示符」窗口。你可以点击鼠标右键,或者按下 Ctrl+V,将刚才复制的命令粘贴到命令行中。接着,按下键盘的回车键,程序就会开始下载大模型了。下载过程可能会有点慢,需要耐心等待一下,直到模型下载完成。
下载完成后,你可以在命令行窗口看到类似这样的提示信息,表示下载已经成功完成。
(5)使用DeepSeek
下载完成后,界面会出现一个「Send a message」的提示框,这时候就可以直接输入对话内容进行测试啦。比如你可以输入一句简单的问题,像“发烧可以吃炸鸡吗?”看看模型回复的效果如何。
如果想退出对话模式,可以在「Send a message」处输入「/?」来获取帮助信息。根据提示,输入「/exit」就可以退出当前对话界面了。
如果想继续对话,只需要重新输入之前下载模型时使用的命令,比如「ollama run deepseek-r1:1.5b」。其实到这里,本地部署就已经成功啦!(1.5b是最低的开源版本,效果可能会稍差一些,建议根据自己的显卡配置尽量选择更高版本,效果会更好哦!)
不过,看到这么多指令,没有计算机基础的小伙伴们是不是感觉有点懵?我第一次看到的时候也有这种感觉,头都快大了,感觉脑子要升级了 😂
• /set 设置会话变量,比如可以调整模型的参数或者其他配置。
• /show 显示当前加载的模型信息,可能包括模型名称、版本、参数等。
• /load <model> 加载一个会话或模型,<model> 代表你要加载的模型或会话名称。
• /save <model> 保存当前的会话,<model> 代表保存的会话名称,以便后续加载继续使用。
• /clear 清除当前的会话上下文,相当于重置对话,让模型忘记之前的交互内容。
• /bye 退出程序,终止会话。
• /? 或 /help 获取某个命令的帮助信息,相当于查看使用说明。
• /? shortcuts 显示键盘快捷键的帮助信息,可能包括一些快速操作的方法。
• 使用 """ 可以开始多行消息,这通常适用于输入较长的内容或代码片段。
命令行窗口操作起来确实不太方便,尤其是复制和粘贴信息的时候,对于普通用户来说更是如此。我们更希望能有一个直观的聊天界面,这样使用起来会更加便捷。为此,我们可以借助 Chatbox AI 这个工具,它能够很好地承接 Ollama,并且让聊天窗口变得可视化。
Chatbox AI 是一款全平台的 AI 客户端应用,支持多种先进的 AI 模型和 API,包括 Ollama 提供的模型。它可以在 Windows、MacOS、Android、iOS、Linux 和网页版上使用,界面简洁,功能强大。通过 Chatbox AI,你可以轻松地与 AI 模型进行交互,无需复杂的命令行操作。
ChatBox AI 官网:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载
我们先来配置网络环境。首先,找到电脑右下角的任务栏箭头,点击展开隐藏的图标。找到Ollama的图标(看起来像个小羊驼🦙),然后点击「Quit Ollama」来退出Ollama。这样就可以开始下一步配置啦!
接下来,进入「高级系统设置」,在「高级」选项卡下找到「环境变量」并点击。在弹出的界面中,直接点击「新建」按钮。
在弹出的「新建系统变量」对话框中,填写变量名「OLLAMA_HOST」(注意大小写和下划线必须完全一致),变量值填写为「0.0.0.0」,这表示允许任何IP地址访问Ollama服务。填写完成后,点击「确定」按钮完成设置。
继续点击「新建」,在弹出的对话框中,填写变量名「OLLAMA_ORIGINS」(注意大小写和下划线必须完全一致),变量值填写为「*」,这表示允许所有来源访问Ollama服务。填写完成后,点击「确定」按钮完成设置。
最后,在环境变量列表中,你会看到新增的两个词条「OLLAMA_HOST」和「OLLAMA_ORIGINS」。确认无误后,点击「确定」按钮保存所有设置,这样网络环境就配置完成了。
环境配置完成后,我们来启动Ollama。首先,点击「开始」菜单,搜索「Ollama」并点击它。启动后,点击桌面右下角的「隐藏图标按钮」,查看任务栏图标。如果看到有羊驼的图标,说明Ollama已经成功启动。
环境设置完成后,打开刚刚从官网下载的Chatbox AI进行安装并启动。首次打开时,会看到一个选择页面,选择第二个选项「使用自己的API Key或本地模型」,接着选择「Ollama API」,这样就可以让Chatbox AI连接到本地部署的Ollama服务了。
接下来,会再次弹出「设置」窗口。点击「Model」选项卡,如果环境配置成功,这里会显示「deepseek-r1:1.5b」。如果没显示,说明环境可能没有配置好,或者可以尝试退出Ollama后重新启动,再次检查配置是否生效。
接着,在设置窗口中找到第二个选项「DISPLAY」,在这里选择语言。默认情况下,它已经设置为简体中文了。确认无误后,点击「保存」按钮完成设置。
完成上述设置后,你就可以真正开始使用本地部署的DeepSeek模型进行聊天了。现在,你可以通过Chatbox AI的界面与DeepSeek模型进行交互,享受更稳定、更快速的AI体验。
好的!目前我们已经成功完成了基础环境版的本地部署教程,可以开始使用DeepSeek进行普通聊天了。虽然这个版本暂时不支持上传文档,但不用担心,后续我会详细介绍一个不需要部署环境的部署版本,它不仅操作简单,还能支持文档上传等多种功能。敬请期待!