大数据阶段项目之项目实现

该博客围绕大数据阶段项目展开,介绍了项目实现流程。包括启动Hadoop分布式集群,用Flume收集数据存入HDFS,启动HIVE并进行数据库、表操作,清洗和整理数据,建立事实表,查询应用受欢迎程度,还阐述了Sqoop组件工作流程及数据可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

              大数据阶段项目之项目实现 

目录

              大数据阶段项目之项目实现 

一.启动Hadoop分布式集群(伪分布式)

二.创建一个文件夹存储数据

三.将文件收集到HDFS

1.在Flume的data下创建zebra.conf

2.利用flume收集数据,将收集的数据落地到HDFS系统中。

3.执行命令,存储HDFS

4.查看eclipse中是否存在

四.启动HIVE

五.使用hive操作

1.创建zebra数据库

2.建立外部表,指向要处理的数据(外部表+分区表,用时间作为分区)

3.修复分区

4.查看数据

5.手动设置分区

6.再次查看数据

五.清洗数据,提取有用数据(23个字段)

1.建表语句

2.插入数据

3.查看数据

六.对清晰之后的数据进行整理,建立事实表

1.建表语句:

2.插入数据:

七.查询关心的信息,以应用受欢迎程度表为例:

1.建表语句:

2.插入数据:

3.查询前5名受欢迎app:

八.Sqoop组件工作流程:

1.在mysql建立对应的表

2.利用sqoop导出d_h_http_apptype表:

3.查看数据

4.可视化页面


一.启动Hadoop分布式集群(伪分布式)

二.创建一个文件夹存储数据

三.将文件收集到HDFS

HIVE是在HDFS上操作的,需要把文件存储到HDFS中,进行操作

1.在Flume的data下创建zebra.conf

2.利用flume收集数据,将收集的数据落地到HDFS系统中。

flume在收集日志的时候,按天为单位进行收集

a1.sources=r1
a1.channels=c1
a1.sinks=s1

a1.sources.r1.type=spooldir
a1.sources.r1.spoolDir=/home/zebra
a1.sources.r1.interceptors=i1
a1.sources.r1.interceptors.i1.type=timestamp

a1.sinks.s1.type=hdfs
a1.sinks.s1.hdfs.path=hdfs://192.168.150.137:9000/zebra/reportTime=%Y-%m-%d
a1.sinks.s1.hdfs.fileType=DataStream
a1.sinks.s1.hdfs.rollInterval=30
a1.sinks.s1.hdfs.rollSize=0
a1.sinks.s1.hdfs.rollCount=0

a1.channels.c1.type=memory
a1.sources.r1.channels=c1
a1.sinks.s1.channel=c1

3.执行命令,存储HDFS

4.查看eclipse中是否存在

四.启动HIVE

五.使用hive操作

1.创建zebra数据库

  • 执行:create database zebra;
  • 执行:use zebra;

2.建立外部表,指向要处理的数据(外部表+分区表,用时间作为分区)

		建表语句:create EXTERNAL table zebra (a1 string,a2 string,a3 string,a4 string,a5 string,a6 string,a7 string,a8 string,a9 string,a10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值