LeetCode300. 最长递增子序列
题目链接:300. 最长递增子序列 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列_哔哩哔哩_bilibili
思路:这道题是子序列系列的第一道题,我们这道题的dp[i]的含义是以nums[i]为结尾的最长递增子序列的长度,要给所有的dp[i]初始化为1,然后对dp数组进行以下操作,首先j<i,如果nums[j]<nums[i],则令dp[i]=max(dp[i],dp[j]+1)。在循环完之后,我们取dp数组中的最大值。
代码:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int len=nums.size();
vector<int>dp(len,1);
for(int i=1;i<len;i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j]){
dp[i]=max(dp[i],dp[j]+1);
}
}
}
int result=0;
for(int i=0;i<len;i++){
result=max(result,dp[i]);
}
return result;
}
};
LeetCode674. 最长连续递增序列
题目链接:674. 最长连续递增序列 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列_哔哩哔哩_bilibili
思路:和前一道题的区别在于连续,反而思路更简单了。dp[i]的含义依旧是到nums[i]的最长递增子序列,dp[i]都初始化为1,此时只需要比较每个nums[i]>nums[i-1],如果大于那么就让dp[i]=dp[i-1]+1.最后依旧返回所有dp数组中的最大值。
代码:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int len=nums.size();
vector<int>dp(len,1);
for(int i=1;i<len;i++){
if(nums[i]>nums[i-1]){
dp[i]=dp[i-1]+1;
}
}
int result=0;
for(int i=0;i<len;i++){
result=max(result,dp[i]);
}
return result;
}
};
LeetCode718. 最长重复子数组
题目链接:718. 最长重复子数组 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili
思路:这道题的dp[i][j]的定义是结尾为nums1[i-1]和结尾为nums2[j-1]的最长充分子数组,至于为什么是i-1和j-1而不是i和j是因为初始化的时候会方便,直接全部初始化为0就可以,否则需要拿某个数组的第一个数字和第二个数组进行比较,匹配的填入1。递推公式为在nums1[i-1]==nums2[j-1]时,dp[i][j]=dp[i-1][j-1]+1;,最后还是求dp数组中的最大值作为result。
代码:
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>>dp(nums1.size()+1,vector<int>(nums2.size()+1,0));
for(int i=1;i<=nums1.size();i++){
for(int j=1;j<=nums2.size();j++){
if(nums1[i-1]==nums2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
}
}
int result=0;
for(int i=1;i<=nums1.size();i++){
for(int j=1;j<=nums2.size();j++){
result=max(result,dp[i][j]);
}
}
return result;
}
};