LeetCode1143. 最长公共子序列
题目链接:1143. 最长公共子序列 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili
思路:这道题和上一道题有点类似,为了方便初始化dp数组依旧还是长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]。注意是i-1和j-1。在匹配一致时的递推式是一样的,不过不一样的时候dp[i][j]=max(dp[i-1][j],dp[i][j-1]),取的是这两个的最大值,最后返回右下角的结果。
代码:
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>>dp(text1.size()+1,vector<int>(text2.size()+1,0));
for(int i=1;i<=text1.size();i++){
for(int j=1;j<=text2.size();j++){
if(text1[i-1]==text2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
}
return dp[text1.size()][text2.size()];
}
};
LeetCode1035. 不相交的线
题目链接:1035. 不相交的线 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili
思路:和上一题一模一样!
代码:
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>>dp(nums1.size()+1,vector<int>(nums2.size()+1,0));
for(int i=1;i<=nums1.size();i++){
for(int j=1;j<=nums2.size();j++){
if(nums1[i-1]==nums2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
}
return dp[nums1.size()][nums2.size()];
}
};
LeetCode53. 最大子数组和
题目链接:53. 最大子数组和 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili
思路:这道题其实很基础的动态规划,dp[i]表示以nums[i]结尾的最大子数组,那么dp[i]取前面和自己以及自己的最大值作为dp[i],最后返回dp数组中的最大值。
代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
vector<int>dp(nums.size(),0);
dp[0]=nums[0];
for(int i=1;i<nums.size();i++){
dp[i]=max(dp[i-1]+nums[i],nums[i]);
}
int result=INT_MIN;
for(int i=0;i<nums.size();i++){
result=max(result,dp[i]);
}
return result;
}
};
LeetCode392. 判断子序列
题目链接:392. 判断子序列 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划,用相似思路解决复杂问题 | LeetCode:392.判断子序列_哔哩哔哩_bilibili
思路:和之前的最长公共子序列很像,只不过这道题如果匹配不一致的话是直接dp[i][j]=dp[i][j-1]相当于删去了t[i-1],以及返回逻辑不一样,返回逻辑是判断最后的dp结果是否等于s的长度。
代码:
class Solution {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>>dp(s.size()+1,vector<int>(t.size()+1,0));
for(int i=1;i<=s.size();i++){
for(int j=1;j<=t.size();j++){
if(s[i-1]==t[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=dp[i][j-1];
}
}
}
if(dp[s.size()][t.size()]==s.size()){
return true;
}
return false;
}
};