- 博客(10)
- 收藏
- 关注
原创 simmc2.0数据集适应到vilbert模型(三)
所以vqa_datasets.py这个数据集里直接将scores去掉。target就是ambiguous_candidates。train_tasks.py里的num_labels也要去掉。simmc2.0的数据集没有score。loss函数和精确率设定。
2025-03-16 16:16:08
36
原创 simmc2.0数据集适应到vilbert模型(二)
因为vilbert的num_labels是固定的。所以在train_tasks.py里定义了这个变量和值。我这个值是变动的,所以先不作为参数传给这个类。问题和图像的特征融合后就可以将答案空间的列表连接起来,从答案空间里选择合适的答案。首先修改num_labels, 我的数据集是object_map。这个模型的原理是:文本特征和图像特征融合后通过分类层来完成下游的任务。vilbert的答案空间是3129维。这个架构师选的的vilbertforvltasks。这个模型主要来自于train.py文件的选择。
2025-03-16 16:02:17
133
原创 simmc2.0数据集适应到vilbert模型(一)
》这一步的修改点:我的simmc的数据集没有question id,省略。添加object_map, image_name。batch里去掉question id, 增加object_map, image_name.返回值时图像特征,位置,问题特征,真实答案target,特征掩码,问题id。vqa_datasets.py数据集加载的修改的。接下来是模型的修改来适应数据集!数据集记载到模型里。这一步为了适应我的模型。
2025-03-16 15:41:44
671
原创 ai编程是的一些技巧总结(随时记录,不定时更新)
1.很多时候数据集字典嵌套列表,再嵌套字典。访问数据或提取数据都比较困难。我要提起的是data的某个数据。data是一个字典。首先打印出数据集的构成。或者可以打印出数据类型。这个数据总体是一个列表。
2025-03-15 17:01:16
126
原创 simmc2.0数据集实装
simmc的数据集是根据图像(=场景)设定的。一个图像有一个object map这个是所有物体的编号,一个候选答案的编码=根据问题从所有物体的编号里选择。每个图像的物体编号都是从头编号的,所以在加载数据集的时候就需要按照场景别来加载数据。feature_loader: visual_feature_path: 图像特征提取的文件。feature的数据:我改成了resnet101,原来是resnet-50。第一步:候选答案的获得的数据集整理。
2025-03-15 15:02:21
214
原创 在写AI程序代码的时候,碰到这个错误教你如何解决:TypeError: list indices must be integers or slices, not tuple
要么存储数据的时候就写成array([...])的格式。首先乍一看似乎是列表的问题。报错的原因是列表不能切片。存储,读取后仍然是 NumPy 数组,不会丢失格式。如果已经是普通的列表了,手动转换为 NumPy 数组。:数据会以 Python 的。,导致 NumPy 操作失败。类型存储,读取后可能变成。
2025-03-13 15:06:33
232
原创 colab安装ubuntu1804,cuda11,miniconda,torch1.8的保姆级教程。
很多论文的代码用的环境都较旧,而现在的软件一般都默认安装最新版的,就导致很多软件不相容的问题。一般出现报错基本也是软件版本的问题。所以干脆就直接用老版本进行环境搭建百试不爽。我现在跑的很多github的项目用的都是这一套环境,几乎没有问题。
2025-03-08 16:15:33
343
原创 facebook AI research的论文vilbert真的学会人工智能了吗?(反复实验研究这篇论文有感)
facebook AI research的论文vilbert真的学会人工智能了吗?(反复实验研究这篇论文有感)
2025-03-06 20:06:40
401
原创 【无标题】
免费使用GPU资源第一种:目前Colab上的cuda版本最新版是12.2,降低cuda版本到11.x第二种:使用最新版的cuda12.2,修改项目代码最后附上遇到的各种问题的解决方法。所以提前找好相应的cuda,torch版本,后面就不要安装错了再改了,一次安装成功。
2024-06-12 15:40:32
2159
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人