贝叶斯决策论
贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于这些概率和误判断来选择最优的类别标记。
假设有N种可能的类别标记,即Y={
c1,c2,...,cn},λij是将一个真实标记为cj的样本误分类为ci所产生的损失。基于后验概率P(ci|x)可获得将样本x分类为ci所产生的期望损失(expected loss),即在样本x上的“条件风险”(conditional risk)
R(ci|x)=∑j=1NλijP(cj|x)
我们的任务是寻找一个判定准则