Google Earth Engine 教程:基于影像聚合进行水体分析

79 篇文章 ¥59.90 ¥99.00
本教程介绍了如何利用Google Earth Engine (GEE)进行水体分析,通过影像聚合技术将高分辨率的Sentinel-2卫星影像转换为低分辨率的水体分布图。教程包括设置GEE帐户、导入Sentinel-2数据、计算水体覆盖百分比以及结果的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍
Google Earth Engine(GEE)是一个强大的云平台,用于存储、处理和分析地理影像和地理空间数据。在这篇教程中,我们将使用GEE平台来进行水体分析。具体而言,我们将使用影像聚合技术,将高分辨率的遥感影像转换为低分辨率的水体分布图。这种方法有助于更好地理解和监测水体的空间分布。

步骤1:准备工作
首先,在开始之前,我们需要在Google Earth Engine平台上设置一个帐户。你可以访问https://earthengine.google.com/并按照指示进行注册和登录 ↗

步骤2:导入数据
在GEE平台上,我们可以使用各种数据源来进行水体分析。在这个教程中,我们将使用Sentinel-2卫星影像数据。下面是导入Sentinel-2影像数据的代码:

// 导入Sentinel-2影像数据集
var dataset 
<think>好的,我现在需要帮助用户在Google Earth Engine (GEE) 上处理Landsat 8影像,提取NDWI并导出水体边界的Shapefile文件。首先,我需要回顾NDWI的计算方法。NDWI通常使用绿光波段和近红外波段来计算,公式是$NDWI = (Green - NIR) / (Green + NIR)$。不过,用户提到的引用中有使用大津算法(OTSU)来提取水体,这可能涉及到阈值的选择。 接下来,我需要考虑如何在GEE中获取Landsat 8的影像。用户可能需要先筛选时间范围和区域,去除云量较高的影像。引用[2]和[4]提到在GEE中处理Landsat数据时进行筛选和裁剪,这可能涉及使用`filterBounds`和`filterDate`方法,然后应用云掩膜。 然后计算NDWI,这部分需要确定正确的波段。Landsat 8的绿光波段是B3,近红外是B5,所以公式应为$NDWI = (B3 - B5)/(B3 + B5)$。计算完成后,可能需要应用OTSU算法确定阈值,或者使用固定阈值来区分水体和背景。引用[3]提到用OTSU方法,这可能更准确,但需要代码实现。 提取水体后,需要将结果转换为矢量,这可能用到`reduceToVectors`方法,将二值图像转为面要素。然后导出为Shapefile,需要注意投影和坐标系的设置,确保导出的文件正确。引用[1]提到导出Shapefile的步骤,可能涉及`Export.table.toDrive`或类似的函数。 同时,用户可能遇到云遮挡问题,需要处理影像合成,比如使用中值合成或者按时间聚合。引用[2]中提到了长时间序列处理,可能需要考虑如何选择或合成影像。 最后,测试代码的正确性,可能需要分步检查每个环节,比如确认NDWI计算正确、阈值分割后的二值图像是否符合预期、矢量转换是否准确等。如果有错误,可能需要调整参数或检查函数用法。 总结步骤:加载Landsat 8数据→预处理(去云、裁剪)→计算NDWI→阈值分割→转为矢量→导出Shapefile。同时,引用中的方法可以作为参考,确保代码符合最佳实践。</think>在Google Earth Engine (GEE) 中提取Landsat 8的NDWI并导出水体边界Shapefile,可按以下步骤操作: --- ### 一、NDWI计算与水体提取流程 1. **加载Landsat 8影像集** ```javascript var l8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2020-01-01', '2020-12-31') .filterBounds(geometry); // geometry为研究区几何范围 ``` 2. **去云处理与影像合成** ```javascript // 云掩膜函数 var maskClouds = function(image) { var qa = image.select('QA_PIXEL'); var cloudBitMask = 1 << 3; // 第3位为云置信度 var mask = qa.bitwiseAnd(cloudBitMask).eq(0); return image.updateMask(mask); }; var l8Filtered = l8.map(maskClouds).median(); // 使用中值合成[^2] ``` 3. **计算NDWI** ```javascript var ndwi = l8Filtered.normalizedDifference(['SR_B3', 'SR_B5']).rename('NDWI'); // NDWI公式:$NDWI = (B3 - B5)/(B3 + B5)$ ``` 4. **阈值分割提取水体** ```javascript var threshold = 0.2; // 经验阈值,可替换为OTSU算法[^3] var water = ndwi.gt(threshold); ``` 5. **转为矢量边界** ```javascript var vectors = water.reduceToVectors({ geometry: geometry, scale: 30, // 与Landsat分辨率一致 geometryType: 'polygon', eightConnected: false }); ``` --- ### 二、导出Shapefile文件 ```javascript Export.table.toDrive({ collection: vectors, description: 'WaterBoundary', fileFormat: 'SHP', selectors: ['NDWI'] // 保留必要属性 }); ``` --- ### 三、完整代码示例 ```javascript // 1. 定义研究区 var geometry = ee.Geometry.Polygon([[...]]); // 替换为实际坐标 // 2. 加载并预处理影像 var l8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2020-01-01', '2020-12-31') .filterBounds(geometry) .map(maskClouds) .median(); // 3. 计算NDWI var ndwi = l8.normalizedDifference(['SR_B3', 'SR_B5']).rename('NDWI'); // 4. 提取水体 var water = ndwi.gt(0.2); // 5. 生成矢量并导出 var vectors = water.reduceToVectors({ geometry: geometry, scale: 30, geometryType: 'polygon', eightConnected: false }); Export.table.toDrive({...}); ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值