在最近举行的视频云技术大会上,火山引擎宣布了一项令人瞩目的创新——专为解决视频大模型训练过程中遇到的成本、质量和性能问题而设计的视频预处理方案。这项技术不仅能够有效地减少资源消耗,同时还能保证高质量的数据准备,从而优化整个训练过程。目前,该方案已经在豆包视频生成模型中得到了应用。
预处理的重要性及挑战
对于任何希望利用大规模视频数据来训练AI模型的企业来说,对这些原始素材进行恰当的预处理是至关重要的一步。正如抖音集团视频架构负责人王悦所指出的那样,在这个阶段面临着几大难题:
成本控制:随着训练所需的数据量不断增加,相关的计算与存储开销也随之上升。
数据质量不一:不同来源的视频内容质量参差不齐,这直接影响到最终模型的效果。
流程复杂性:从收集到清洗再到格式化,每一步都充满了细节上的考量,需要精细的操作才能完成。
异构算力管理:如何高效地利用包括GPU、CPU以及ARM在内的多种计算平台也是一大考验。
面对上述种种障碍,火山引擎通过自主研发的多媒体处理框架BMF给出了答案。
BMF框架助力突破瓶颈
火山引擎此次推出的解决方案基于其自研的多媒体处理框架BMF(ByteDance Multimedia Framework),旨在克服现有预处理工作中的种种局限。BMF具有以下几点优势:
降低成本:通过优化算法和工程实践,大幅减少了所需的计算资源,使得即使是在处理超大规模数据集时也能保持经济性。
提升效率:能够在短时间内快速完成大量视频文件的处理任务,并且保证了处理链条的高度协调性,加快了整体进度。
开源共享:为了进一步促进业界交流与发展,火山引擎还推出了轻量级版本BMF lite并将其开源。这一举措让更多的开发者能够轻松接入端侧的大规模模型,并享受到加速运算带来的便利。
字节跳动自研芯片取得突破
除了软件层面的努力外,字节跳动还在硬件领域取得了重要进展。王悦透露,公司正在开发一款专门针对视频编解码任务设计的ASIC芯片。经过内部测试表明,这款新芯片可以在相同压缩比率下将运行成本降低95%以上。此外,在2024年MSU世界编码器大赛上,它更是荣获“最佳ASIC编码器”称号,充分展示了其实力。
火山引擎发布的这套全新视频预处理方案无疑为当前火热的人工智能领域注入了新的活力。通过结合先进的软件技术和高效的硬件支持,它不仅解决了长期以来困扰着许多研究者的问题,也为未来更广泛的应用场景打开了大门。我们有理由相信,在不久的将来,随着更多类似创新成果的不断涌现,人工智能技术将迎来更加辉煌的发展时期。