深度学习之损失函数(一)

一、对损失函数的初步了解

  1.1什么是损失函数?

  损失函数,又可以称为代价函数,其通常用于衡量模型预测结果与真实标签之间的差距。通过最小化损失函数,模型可以调整自身的参数以更准确地预测目标变量。
  那么损失函数有哪些主要作用呢?

  • 衡量预测与真实值之间的差距
  • 提供梯度信号用于优化
  • 引导模型训练过程

  当然,这些回答都相当的官方化了。在第二部分,将进行详细的解释。

  1.2 常用的损失函数

  当说起均方误差(Mean Squared Error,MSE)、平方损失函数(Squared Loss Function)等等,大家应该不会很陌生。是的,在日常生活中,其实大家或多或少都接触过损失函数,例如大家通常在计算误差时会用到它们。那么有哪些常用的损失函数呢?

  • 均方误差: ∑ i = 1 n ∣ y − y i ∣ 2 n , \frac{\sum_{i=1}^n|y-y_i|^2}{n}, ni=1nyyi2,其中 y y y表示预测值, y i y_i yi表示标签值
  • 平方损失函数: ∣ y − y i ∣ 2 |y-y_i|^2 yyi2
  • 对数损失(Log Loss): − [ y ∗ l o g ( y i ) + ( 1 − y ) ∗ l o g ( 1 − y i ) ] -[y * log(y_i) + (1 - y) * log(1 - y_i)] [ylog(yi)+(1y)log(1yi)],其中, y y y表示真实标签(0或1), y i y_i yi表示模型输出的概率值(0到1之间)

二、损失函数的形象化理解

  假设给你一个位于直角坐标系的点(3,4),让你找到距离该点最近的直线,你可能一下子就找到了,因为此时问题非常的简单,你只需要找到经过该点的所有直线就可以了,此时该点距离你所给出的函数的直线距离为0,我们称这个值为你为了拟合该点而给出的函数所需要付出的代价(或者损失),由这个代价和标签值组成的函数则称为损失函数

  一个点实在是太简单了,那如果我增加到两个呢?
在这里插入图片描述
  是的,这个时候你会发现,虽然红色曲线仍然十分契合所给的坐标点,但是其他两条曲线(蓝色和黄色曲线)却不那么契合了,此时,你就会想到需要调整蓝色和黄色曲线,使其与这两点契合,那么这个过程就叫做减小损失值(代价)。那么映射到现实问题中,黑色点的代表的则是标签值,而曲线上的所有点,表示的是你给出的预测值,而我们要做的,就是利用各种损失函数来衡量标签值与预测值的误差,不同体系所用的损失函数不同,利用适合的损失函数将会提高模型的精确度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值