【机器学习】最小二乘法支持向量机LSSVM的数学原理与Python实现

本文详细介绍了LSSVM(最小二乘法支持向量机)的数学原理,包括从感知机到SVM的演变,以及LSSVM与SVM的区别。LSSVM通过引入误差项和L2正则化,解决了非线性可分问题,并转化为带等式约束的二次规划问题。相比于SVM,LSSVM在求解效率上有优势,但其模型缺乏稀疏性。文章还提供了LSSVM的Python实现链接,供读者进一步实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【机器学习】最小二乘法支持向量机LSSVM的数学原理与Python实现

一、LSSVM数学原理

1. 感知机

SVM是从感知机发展而来。假设有m个训练样本 { ( x i , y i ) } i = 1 m \left\{ {\left. {\left( { {x_i},{y_i}} \right)} \right\}} \right._{i = 1}^m { (xi,yi)}i=1m, y i ∈ { 1 , − 1 } {y_i} \in \left\{ {1, - 1} \right\} yi{ 1,1} x i ∈ R n {x_i} \in {R^n} xiRn表示n维的训练样本输入向量。我们企图找到分隔超平面 W X + b = 0 WX + b = 0 WX+b=0能够分隔正负样本。
感知机直接将误分类的样本到分隔超平面之间的距离作为损失函数。在感知机模型求解过程中,分隔超平面权重W和偏差b的初始值选择不同,求出最终的分隔超平面是不同的。这就引出了SVM的模型训练思想:使得离分隔超平面最近的样本与分隔超平面的距离最远。下面介绍函数间隔与几何间隔的含义:

2. SVM

  • 函数间隔:
    对于训练集中的一个样本 ( x i , y i ) \left( { {x_i},{y_i}} \right) (xi,yi),其函数间隔为 r i = y i ( W ⋅ x i + b ) { r_i} = {y_i}(W \cdot {x_i} + b) ri=yi(Wxi+b)
    训练集的函数间隔等于所有样本点的函数间隔的最小值: r = min ⁡ i = 1 , ⋯ m r i r = \mathop {\min }\limits_{i = 1, \cdots m} {r_i} r=i=1,mminri
    函数间隔只能表示分类预测的正确性,不能表示样本到分隔超平面的准确距离。

  • 几何距离
    对于训练集中的一个样本 ( x i , y i ) \left( { {x_i},{y_i}} \right) (xi,yi),其函数间隔为 R i = y i ⋅ 1 ∥ W ∥ ( W ⋅ x i + b ) {R_i} = {y_i} \cdot \frac{1}{ {\left\| W \right\|}}\left( {W \cdot {x_i} + b} \right) Ri=yiW1(Wxi+b)
    训练集的函数间隔等于所有样本点的函数间隔的最小值: R = min ⁡ i = 1 , ⋯ m R i R = \mathop {\min }\limits_{i = 1, \cdots m} {R_i} R=i=1,mminRi
    几何间隔不但可以表示分类预测的正确性还能准确地表示样本到分隔超平面的距离。

SVM的优化问题转化为最大化训练样本的几何距离:

max ⁡ W , b r ∥ W ∥ s . t . y i ( W ⋅ x i + b ) ≥ r , i = 1 , 2 , ⋯ m \begin{array}{l}\mathop {\max }\limits_{W,b} \frac{r}{ {\left\| W \right\|}}\\s.t.{y_i}\left( {W \cdot {x_i} + b} \right) \ge r,i = 1,2, \cdots m\end{array} W,bmaxWrs.t.yi(Wxi+

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值