【语音识别】语音端点检测及Python实现

本文介绍了语音信号的分帧处理方法,利用直角窗进行处理,并探讨了端点检测的重要方法——短时能量和短时过零率,结合这两种方法在Python中实现人声开始和结束端点的检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


从接收的语音信号中准确检测出人声开始和结束的端点是进行语音识别的前提。本博文介绍基于短时过零率和短时能量的基本语音端点检测方法及Python实现。如图所示为语音信号,红色方框内为人声:
在这里插入图片描述

一、语音信号的分帧处理

语音信号是时序信号,其具有长时随机性和短时平稳性。长时随机性指语音信号随时间变化是一个随机过程,短时平稳性指在短时间内其特性基本不变,因为人说话是肌肉具有惯性,从一个状态到另一个状态不可能瞬时完成。语音通常在10-30ms之间相对平稳,因此语音信号处理的第一步基本都是对语音信号进行分帧处理,帧长度一般取10-30ms。
语音信号的分帧处理通常采用滑动窗的方式,窗口可以采用直角窗、Hamming窗等。窗口长度决定每一帧信号中包含原始语音信号中信息的数量,窗口每次的滑动距离等于窗口长度时,每一帧信息没有重叠,当窗口滑动距离小于窗口长度时帧信息有重合。本博文采用直角窗进行语音信号的分帧处理:

直角窗:
h ( n ) = { 1 , 0 ≤ n ≤ N − 1 0 , o t h e r {\rm{h}}(n) = \left\{ {\begin{matrix} {1, 0\le n \le N - 1}\\ {0,{\rm{other}}} \end{matrix}} \right. h(n)={ 1,0nN10,other

二、端点检测方法

端点检测是指找出人声开始和结束的端点。利用人声信号短时特性与非人声信号短时特性的差异可以有效地找出人声开始和结束的端点,本博文介绍短时能量和短时过零率结合进行端点检测的方法。

2.1、短时能量

第n帧信号的短时平均能量定义为:
E n = ∑ m = n − N + 1 n [ x ( m ) w ( n − m ) ] 2 {E_n} = \sum\limits_{m = n - N + 1}^n { { {\left[ {x\left( m \right)w\left( {n - m} \right)} \right]}^2}} En=m=nN+1n[x(m)w(nm)]2
包含人声信号的帧的短时平均能量大于非人声信号的帧。

2.2、短时过零率

过零信号指通过零值,相邻取样值改变符号即过零,过零数是样本改变符号的数量。
第n帧信号的平均短时过零数为:
Z n = ∑ m = n − N + 1 n ∣ s g n [ x ( m ) ] − s g n [ x ( m − 1 ) ] ∣ w ( n − m ) {Z_n} = \sum\limits_{m = n - N + 1}^n {\left| { {\mathop{\rm sgn}} \left[ {x\left( m \right)} \right] - {\mathop{\rm sgn}} \left[ {x\left( {m - 1} \right)} \right]} \right|w\left( {n - m} \right)} Zn=

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值