读《白话统计》笔记——第四章

本文是《白话统计》第四章笔记,主要讨论统计资料的类型,包括定量资料(连续型和离散型)、定性资料(二分类、无序多分类和有序多分类)。区分计数资料与分类资料,强调分析方法应结合数据类型和研究目标。计数资料通常用Poisson或负二项回归,分类资料则依据有序无序选择检验方法。此外,介绍了连续资料何时转换为分类资料的判断标准及分组方法,如利用ROC曲线、最大选择秩统计量、分类树和聚类分析。最后,解释了虚拟变量/哑变量的概念,用于处理非线性关系的多分类变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第四章 关于统计资料类型的思考

资料(data):

  • 定量资料(Quantitative Data)
    • 连续型资料(Continuous Data):任意值,可以有小数
    • 离散型资料(Discrete Data):只能是整数,不能是小数
  • 定性资料(Qualitative Data)
    • 二分类资料(Binary Data)
    • 无序多分类资料(Nominal Data):没有一定的等级顺序,顺序可以置换,并不影响分析
    • 有序多分类资料(Ordinal Data):有一定的等级顺序,不能随意置换

选择分析方法的时候,需要注意数据类型。同时要结合研究目的,有序还是无序、定量还是分类,有时候研究目的不同,可以选择不同的方法进行分析

4.1 计数资料等于分类资料吗
  • 计数资料(Count Data),是一个一个计数清点而得到的资料,是有单位的。如记录发病次数,1,2,3,…,有单位:次。

  • 分类资料,没有单位。如性别只有男女,通常用1和0表示,没有单位。100男120女,是频数。

  • 计数资料服从Poisson分布,可用Poisson回归分析;

  • 分类资料服从二项分布或者多项分布,一般采用二分类或者多项Logistic回归分析。

由此可见,进行分析时,应当注意数据类型、代表的现实意义

4.2 计数资料可否采用连续资料的方法进行分析

计数资料,一般用Poisson回归或者负二项回归进行分析。

选择的分析方法时,需要注意数据类型、结合数据实际意义、明确分析目标。

如果计数资料取值都远离0,大致呈正态分布,而且对预测值出现小数点、负数不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值