Flink 作业提交流程

Apache Flink 的 作业提交流程(Job Submission Process) 是指从用户编写完 Flink 应用程序,到最终在 Flink 集群上运行并执行任务的整个过程。它涉及多个组件之间的交互,包括客户端、JobManager、TaskManager 和 ResourceManager。


🧩 一、Flink 作业提交整体流程图解

[Client] → 提交 JobGraph
     ↓
[JobManager / Dispatcher] → 调度与资源申请
     ↓
[ResourceManager] → 分配 TaskManager Slot
     ↓
[TaskManager] → 启动 Task 并执行 Subtask
     ↓
[JobManager] → 协调任务状态、检查点等

📌 二、Flink 作业提交详细步骤说明

步骤描述
1. 用户编写代码使用 DataStream API 或 SQL 编写 Flink 作业
2. 构建 StreamGraph客户端将逻辑流转换为 StreamGraph(DAG)
3. 转换为 JobGraph将 StreamGraph 转换为 JobGraph,包含算子链、并行度等信息
4. 提交 JobGraph 到集群通过 CLI、REST API 或 Web UI 提交到 Flink 集群
5. JobManager 接收并初始化创建 ExecutionGraph,管理任务调度
6. ResourceManager 分配资源根据资源需求向 TaskManager 申请 Slot
7. TaskManager 启动任务在分配的 Slot 上启动 Task,并开始执行 Subtask
8. 执行计算任务持续处理数据流,进行状态更新和窗口计算
9. 状态管理与容错Checkpoint/Savepoint 机制保障状态一致性
10. 结果输出或写入外部系统输出到 Sink(如 Kafka、HDFS、MySQL 等)

⚙️ 三、各组件职责详解

组件职责
Client提交作业、打包 JAR、生成 JobGraph
JobManager负责任务调度、协调 Checkpoint、维护 ExecutionGraph
Dispatcher接收作业提交请求,负责创建 JobManager
ResourceManager管理 TaskManager 的 Slot 资源,分配资源给 JobManager
TaskManager执行具体的 Task,每个 Task 包含一个或多个 Subtask
ExecutionGraphJobManager 内部的执行图,用于调度 Subtask
Checkpoint Coordinator协调 Checkpoint,确保状态一致性

📦 四、作业提交方式汇总

方式描述命令示例
CLI 提交最常用方式,适合本地测试和生产部署flink run -c com.example.MyJob ./myjob.jar
Web UI 提交图形化界面上传 JAR 文件并运行http://localhost:8081
REST API 提交适用于自动化部署、平台集成POST /jars/{jarid}/run
YARN Session 模式多个作业共享一个 YARN ApplicationMasteryarn session -n 2 -tm 2048
Application 模式每个作业单独启动一个 ApplicationMasterflink run-application -t yarn-application ./myjob.jar
Kubernetes Native 模式在 Kubernetes 上直接部署 Flink 作业使用 Operator 或 Native 部署模式

🧠 五、提交流程详解(以 Standalone 或 YARN 模式为例)

✅ 1. 客户端(Client)

  • 编译并打包 Flink 作业为 JAR 文件
  • 使用 flink run 命令提交作业
  • 生成 JobGraph 并发送至 JobManager
flink run -m yarn-cluster -p 4 -c com.example.WordCount ./wordcount.jar

✅ 2. JobManager(也称作 Dispatcher + JobMaster)

  • 接收 Client 提交的 JobGraph
  • 创建 ExecutionGraph,描述任务执行计划
  • 请求 ResourceManager 分配资源

✅ 3. ResourceManager

  • 根据 JobManager 请求,向 TaskManager 申请 Slot
  • 协调资源分配,保证资源公平使用

✅ 4. TaskManager

  • 收到 Slot 分配通知后,准备执行环境
  • 加载 JAR 文件,启动 Subtask
  • 向 JobManager 报告执行状态

✅ 5. ExecutionGraph 执行

  • JobManager 监控所有 Task 的执行情况
  • 触发 Checkpoint,维护状态一致性
  • 处理失败重试、反压监控等

📊 六、JobGraph vs StreamGraph vs ExecutionGraph 对比

名称描述特点
StreamGraph用户编写的 DAG 流程包含 operator chain 优化后的逻辑图
JobGraph提交到集群的任务图包含 operator chains、slot sharing group 等元数据
ExecutionGraphJobManager 内部运行图包含实际执行的 Subtask 及其依赖关系

🔁 七、状态恢复与 Checkpoint 流程

  1. JobManager 定期触发 Checkpoint
  2. TaskManager 将状态快照写入配置的 Checkpoint 存储路径(如 HDFS)
  3. JobManager 收集所有 Task 的 Checkpoint 成功信号
  4. 如果发生故障,从最近成功的 Checkpoint 恢复状态

🧪 八、完整提交命令示例(YARN 模式)

# 启动 YARN Session
flink run-application -t yarn-application \
    -Djobmanager.memory.process.size=1024mb \
    -Dtaskmanager.memory.process.size=2048mb \
    -Dparallelism.default=4 \
    ./my-flink-job.jar
# 提交到已有的 Session 集群
flink run -m yarn-cluster -p 4 -c com.example.MyJob ./myjob.jar

🧩 九、提交流程中的关键概念

概念描述
Operator Chaining算子链合并,减少网络传输开销
Slot Sharing Group同一组内的算子可共享同一个 Slot
Parallelism设置每个算子的并发数
Checkpoints用于状态一致性和容错机制
Savepoints手动触发的状态快照,用于升级、迁移等
Backpressure当下游处理速度慢于上游时产生的压力反馈机制

✅ 十、总结:Flink 作业提交流程的核心阶段

阶段描述
1. 客户端构建将用户代码转换为 StreamGraph → JobGraph
2. 提交作业Client 提交到 JobManager
3. 资源调度ResourceManager 分配 TaskManager Slot
4. 任务执行TaskManager 启动 Subtask 并执行逻辑
5. 状态管理Checkpointing 保障状态一致性
6. 故障恢复重启失败任务并从 Checkpoint 恢复

📘 十一、扩展学习方向

如果你希望我为你演示以下内容,请继续提问:

  • Flink on YARN 提交流程详解
  • Flink on Kubernetes 提交原理
  • 自定义 Checkpoint 存储路径
  • Savepoint 的使用与恢复
  • ExecutionGraph 的结构与作用
  • 如何查看 Web UI 中的 ExecutionGraph
  • 作业失败时的恢复机制详解

📌 一句话总结:

Flink 作业提交流程是一个多组件协作的过程,核心是 JobGraph 的构建与 ExecutionGraph 的执行,结合 Checkpoint 实现高可用与状态一致性。

<think>好的,用户想了解Apache Flink作业的执行流程。我需要根据提供的引用内容来构建一个详细的回答。首先,用户提到的三个引用中,引用[1]和[2]直接涉及Flink的执行流程和图形转换,引用[3]则关于窗口处理,可能与执行流程关系不大,但可能在某些阶段涉及。 首先,根据引用[1],Flink的执行流程分为四个阶段的图:DataFlow Graph、Optimized DataFlow Graph、JobGraph和ExecutionGraph。我需要详细解释每一层图的转换过程和功能。例如,DataFlow Graph是用户编写的程序逻辑转换而来的,Optimized进行优化,JobGraph是提交给JobManager的,而ExecutionGraph是并行化的实例。 然后,引用[2]提到StreamGraph可视化工具和operator的转换,这对应到DataFlow Graph阶段。用户可能想知道具体的转换步骤,比如如何从用户代码生成StreamGraph,再转化为JobGraph。这里需要结合代码示例或执行计划的生成过程,比如env.getExecutionPlan()的使用。 接下来,需要确保回答结构清晰,分阶段说明,并引用对应的文献。例如,在解释每个图的时候,标注引用[1]或[2]。另外,用户可能需要知道每个阶段的作用,比如优化阶段做了什么,如何调度到集群等。 另外,用户可能对并行度和资源分配感兴趣,这涉及到ExecutionGraph的部分,需要解释Task和Subtask的概念。同时,容错机制可能涉及检查点,但引用中没有提到,可能需要避免深入。 最后,生成相关问题需要考虑用户可能的后续疑问,比如各图之间的区别、如何优化性能、并行度设置和错误处理机制。这些问题应基于已解释的内容,引导用户进一步了解。 需要检查是否符合格式要求,行内公式用$,独立公式用$$,但当前内容可能较少涉及数学公式,所以可能不需要。确保使用中文,代码块用正确语法,如Python示例。但用户的问题中未涉及代码,可能不需要代码块,但如果有例子可以加入。 总结回答结构:分四层图详细说明,每部分包含定义、转换过程和功能,引用对应的文献,最后生成相关问题。</think>### Apache Flink 作业执行流程详解 Apache Flink 作业的执行流程通过**四层图模型**实现从用户代码到分布式任务调度的转换。以下是各阶段的详细说明: --- #### 1. **DataFlow Graph(逻辑数据流图)** - **定义**:由用户编写的程序(如DataStream/DataSet API)转换而成,反映原始逻辑结构。例如,`map`、`filter`、`window`等操作符按代码顺序连接。 - **特点**: - 包含**算子(Operator)**和**数据流(DataStream)**的依赖关系。 - 未进行任何优化,仅表示程序逻辑[^1]。 - **示例**:若代码包含`Source → Map → Window → Sink`,生成的DataFlow Graph会明确体现这一链路。 --- #### 2. **Optimized DataFlow Graph(优化后的逻辑图)** - **转换过程**:Flink 对DataFlow Graph应用优化规则,如: - **算子融合(Operator Chaining)**:将多个算子合并为一个Task,减少序列化开销。 - **谓词下推(Predicate Pushdown)**:提前过滤数据以减少后续计算量。 - **目标**:提升执行效率,但尚未涉及物理资源分配[^1]。 --- #### 3. **JobGraph(作业图)** - **生成方式**:优化后的逻辑图被转换为JobGraph,提交至**JobManager**。 - **关键变化**: - **Task划分**:将多个Operator合并为**JobVertex**(例如,`Source + Map`合并为一个顶点)。 - **数据交换**:定义Task间的数据传输方式(如Forward、Hash、Broadcast)[^1][^2]。 - **示例**:通过`env.getExecutionPlan()`可生成可视化执行计划[^2]。 --- #### 4. **ExecutionGraph(执行图)** - **并行化**:JobManager根据并行度将JobGraph展开为ExecutionGraph。 - 每个JobVertex拆分为多个**ExecutionVertex**(对应一个Subtask)。 - 数据流边(Edge)扩展为实际的数据传输通道。 - **调度**:ExecutionGraph被拆分为**Task**,分配至**TaskManager**的Slot中执行[^2]。 --- #### 执行流程总结 ``` 用户代码 → DataFlow Graph → 优化 → JobGraph → 并行化 → ExecutionGraph → 调度执行 ``` --- ### 相关问题 1. Flink 的**算子融合(Operator Chaining)**如何提升性能? 2. 如何通过**调整并行度**优化Flink作业的资源利用率?[^2] 3. Flink 如何处理数据流的**无序事件**?[^3] 4. **JobManager**和**TaskManager**在作业执行中的具体职责是什么?[^1] --- 通过上述四层图的转换,Flink 实现了从逻辑描述到分布式任务的高效执行,同时支持动态优化与容错机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值