手把手教你学Simulink--基于智能电网与AI融合的场景实例:基于深度学习的并网逆变器故障诊断

目录

一、背景介绍

二、系统架构设计

三、建模过程详解

第一步:创建故障诊断系统模型

1. 添加主电路模块

第二步:故障注入建模

1. IGBT开路故障

2. IGBT短路故障

3. 故障触发逻辑

第三步:数据采集与预处理

1. 采集信号

2. 预处理步骤

第四步:深度学习模型设计与集成

1. 模型选择

2. 使用LSTM示例(推荐)

(1) 训练LSTM模型(MATLAB脚本)

(2) 在Simulink中调用训练好的模型

第五步:仿真与诊断流程

1. 仿真配置

2. 测试流程

第六步:结果分析

1. 波形特征

2. 诊断性能

3. 输出示例

四、总结

核心收获:

拓展应用:

优化方向:


——基于智能电网与AI融合的场景实例:基于深度学习的并网逆变器故障诊断


一、背景介绍

在智能电网与新能源大规模接入的背景下,并网逆变器作为光伏、风电等分布式能源的“心脏”,其运行可靠性直接关系到整个系统的安全与效率

然而,逆变器长期工作在高温、高湿、高电压的恶劣环境中,易发生各类故障,如:

  • ✅ IGBT开路/短路故障
  • ✅ 驱动电路故障
  • ✅ 传感器漂移或失效
  • ✅ 电容老