目录 手把手教你学Simulink 一、背景介绍 二、系统架构设计 三、建模过程详解 第一步:创建故障诊断系统模型 1. 添加主电路模块 第二步:故障注入建模 1. IGBT开路故障 2. IGBT短路故障 3. 故障触发逻辑 第三步:数据采集与预处理 1. 采集信号 2. 预处理步骤 第四步:深度学习模型设计与集成 1. 模型选择 2. 使用LSTM示例(推荐) (1) 训练LSTM模型(MATLAB脚本) (2) 在Simulink中调用训练好的模型 第五步:仿真与诊断流程 1. 仿真配置 2. 测试流程 第六步:结果分析 1. 波形特征 2. 诊断性能 3. 输出示例 四、总结 核心收获: 拓展应用: 优化方向: 手把手教你学Simulink ——基于智能电网与AI融合的场景实例:基于深度学习的并网逆变器故障诊断 一、背景介绍 在智能电网与新能源大规模接入的背景下,并网逆变器作为光伏、风电等分布式能源的“心脏”,其运行可靠性直接关系到整个系统的安全与效率。 然而,逆变器长期工作在高温、高湿、高电压的恶劣环境中,易发生各类故障,如: ✅ IGBT开路/短路故障 ✅ 驱动电路故障 ✅ 传感器漂移或失效 ✅ 电容老