215. 数组中的第K个最大元素

本文介绍两种高效算法解决寻找未排序数组中第K大的元素问题。一是利用小根堆实现,时间复杂度O(nlogk),二是快速排序派生算法,平均时间复杂度O(n)。两种方法各有优势,适用于不同场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

215. 数组中的第K个最大元素

题目描述

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

说明:

你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。


题解:
法一:

小根堆。

维护一个大小为 k 的小根堆,不停的将 nums 中的元素插入,当堆中元素大于 k 时,删除堆顶元素,最后的堆顶就是第 k 大结果。

时间复杂度: O ( n l o g k ) O(nlogk) O(nlogk)

额外空间复杂度: O ( k ) O(k) O(k)

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int, vector<int>, greater<int> > q;
        for ( auto &it : nums ) {
            q.push( it );
            if ( q.size() > k )
                q.pop();
        }
        return q.top();
    }
};
/*
时间:8ms,击败:91.73%
内存:9.9MB,击败:40.03%
*/
法二:

快排。

根据快排思想,判断 pivot 在划分后的位置,假设对于区间 [l, r] 在划分后,左右指针分别为 ijpivot 的位置是 i

  • 如果 i + 1 == k ,返回 pivot
  • 如果 i + 1 > k ,需要在左边查找
  • 如果 i + 1 < k ,需要在右边查找

时间复杂度: O ( n ) O(n) O(n)

额外空间复杂度: O ( l o g n ) O(logn) O(logn)

class Solution {
public:
    int quick_sort( int l, int r, vector<int>& nums, int k ) {
        if ( l == r ) return nums[l];
        int i = l, j = r;
        int rand_idx = rand() % ( r - l + 1) + l;
        swap( nums[l], nums[rand_idx] );
        int pivot = nums[l];
        while ( i < j ) {
            while ( i < j && nums[j] <= pivot ) --j;
            if ( i < j ) nums[i++] = nums[j];
            while ( i < j && nums[i] >= pivot ) ++i;
            if ( i < j ) nums[j--] = nums[i];
        }
        nums[i] = pivot;
        if ( i + 1 == k ) return pivot;
        else if ( i >= k ) return quick_sort( l, i - 1, nums, k );
        else return quick_sort( i + 1, r, nums, k );
    }
    int findKthLargest(vector<int>& nums, int k) {
        return quick_sort( 0, nums.size() - 1, nums, k );
    }
};
/*
时间:4ms,击败:99.20%
内存:9.8MB,击败:49.24%
*/

下面贴一个选择左边界为 pivot 的情况:

class Solution {
public:
    int quick_sort( int l, int r, vector<int>& nums, int k ) {
        if ( l == r ) return nums[l];
        int i = l, j = r, pivot = nums[l];
        while ( i < j ) {
            while ( i < j && nums[j] <= pivot ) --j;
            if ( i < j ) nums[i++] = nums[j];
            while ( i < j && nums[i] >= pivot ) ++i;
            if ( i < j ) nums[j--] = nums[i];
        }
        if ( i + 1 == k ) return pivot;
        else if ( i >= k ) return quick_sort( l, i - 1, nums, k );
        else return quick_sort( i + 1, r, nums, k );
    }
    int findKthLargest(vector<int>& nums, int k) {
        return quick_sort( 0, nums.size() - 1, nums, k );
    }
};
/*
时间:44ms,击败:33.27%
内存:9.7MB,击败:83.19%
*/

在贴一个选择中间值为 pivot

class Solution {
public:
    int quick_sort( int l, int r, vector<int>& nums, int k ) {
        if ( l == r ) return nums[l];
        int i = l, j = r;
        int m = (l + r) >> 1;
        swap( nums[l], nums[m]);
        int pivot = nums[l];
        while ( i < j ) {
            while ( i < j && nums[j] <= pivot ) --j;
            if ( i < j ) nums[i++] = nums[j];
            while ( i < j && nums[i] >= pivot ) ++i;
            if ( i < j ) nums[j--] = nums[i];
        }
        if ( i + 1 == k ) return pivot;
        else if ( i >= k ) return quick_sort( l, i - 1, nums, k );
        else return quick_sort( i + 1, r, nums, k );
    }
    int findKthLargest(vector<int>& nums, int k) {
        return quick_sort( 0, nums.size() - 1, nums, k );
    }
};
/*
时间:8ms,击败:91.73%
内存:9.7MB,击败:74.82%
*/

最好不要选择左边界为 pivot 。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值