机器学习(三)——线性回归

本文深入探讨了矩阵和向量的基本概念,包括它们的定义、维数、表示方法,以及矩阵加法、标量乘法、乘法的特性。特别讲解了矩阵乘法的应用,如如何将假设函数应用于多个数据点进行预测。此外,还介绍了单位矩阵、逆矩阵、矩阵转置等关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵和向量

矩阵是二维数组的另一种说法。矩阵的维数即行数×列数。Aij指第i行,第j列的元素。
向量是一种特殊的矩阵,是只有一列的矩阵。
通常在书写时,使用大写字母表示矩阵,小写字母表示向量。

加法和标量乘法

  • 矩阵的加法
  • 矩阵的乘法

矩阵向量乘法

矩阵乘法

mn矩阵乘以no矩阵变成m*o矩阵。

通过构建两个矩阵可以快速地把这三个假设函数应用到4个房子的尺寸中,得到12种基于3个假设对4个房屋预测到的价格。

矩阵乘法特征

1.矩阵的乘法不满足交换律:AB≠BA
2.矩阵的乘法满足结合律:(AB)C=A(BC)
3.单位矩阵:方阵,用I或E表示。沿对角线上都是1,其他位置都是0。对任何矩阵,有: A·I=I·A=A
4.AB≠BA,但当B为单位矩阵时,成立。

逆和转置

  • 矩阵的逆
    如矩阵A是一个m*m矩阵(方阵),如果有逆矩阵,则:

    不存在逆矩阵的矩阵叫作奇异矩阵或退化矩阵。
  • 矩阵的转置
    假设A是一个m×n的矩阵,设矩阵B等于A的转置,那么B是一个n×m的矩阵,并且有:

    例:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值