文章目录
0 引言
ORB-SLAM2算法1 已成功编译安装ORB-SLAM2
到本地,本篇目的是用TUM
开源数据来运行ORB-SLAM2
,并生成轨迹,最后用evo
评估工具来评估ORB-SLAM2
生成的轨迹和真值轨迹。
1 evo工具
1.1 简介
evo工具
是用于评估视觉SLAM(Simultaneous Localization and Mapping)
系统的开源Python
工具包。evo
是"EValuation of Odometry"
的简称,它提供了一系列可视化和数值化的评估指标,用于比较和分析不同SLAM
算法的性能。
evo
工具支持多种输入格式,包括轨迹文件(如KITTI、TUM
等数据集格式)、ROS
话题和TUM RGB-D
数据集。它可以计算轨迹误差、绝对轨迹