LTD: Low Temperature Distillation for Robust Adversarial Training

本文介绍了一种利用低温蒸馏(Low-temperature Distillation)策略来增强神经网络对抗样本鲁棒性的方法。通过使用软标签替代硬标签训练,减少对抗样本间的决策边界,作者在Chen和Lee的预印本arXiv:2111.02331中详细探讨了这一技术。研究还包括对批量采样和批归一化(BN)行为的深入分析。提问者质疑是否尝试过在对抗训练(Adversarial Training, AT)中应用该方法,但未找到显著创新点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

Chen E. and Lee C. LTD: Low temperature distillation for robust adversarial training. arXiv preprint arXiv:2111.02331, 2021.

本文利用distillation来提高网络鲁棒性.

主要内容

如上图所示, 作者认为, 如果我们用one-hot的标签进行训练, 结果会导致图(b)中的情形, 于是两个分布中间的空袭部分均可以作为分类边界, 从而导致存在大量的对抗样本的存在. 解决的方案要么更加密集的采样(即增加样本), 或者使用soft-label即本文的策略.

本文的目标即:
L L T D = L c e ( p s ( x ; T = 1 ) , p t ( x ; T = τ ) ) + β K L ( p s ( x ; T = 1 ) ∥ p s ( x ′ ; T = 1 ) ) , \mathcal{L}_{LTD} = \mathcal{L}_{ce}(p^s(x; T=1), p^t(x;T=\tau)) + \beta \mathrm{KL}(p^s(x;T=1)\|p^s(x';T=1)), LLTD=Lce(ps(x;T=1),pt(x;T=τ))+βKL(ps(x;T=1)ps(x;T=1)),
其中 p s p^s ps表示学生网络得到的概率向量, 而 p t p^t pt是在普通数据上训练好的教师网络得到的概率向量(且注意其temperature不为1, 根据作者的消融实验, T = 5 T=5 T=5对于WRN是一个不错的选择).

可以发现, 上述目标与普通的TRADES仅仅差别与第一项改用了soft-label.

作者还额外讨论了BN的作用, 如果单独使用干净或者对抗样本进行更新, 网络几乎是不收敛的. 而先更新干净或者对抗样本对最后的结果影响不大. 这个还挺有意思的, 我也做过类似的东西, 会不会是被kill了?

问?
不晓得作者有没有试过AT的distillation, 因为感觉没有特别的创新点, 难不成AT上不起作用?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值