组合导航是一种利用多个传感器融合数据来提高导航精度的技术。其中,惯性测量单元(IMU)和全球卫星导航系统(GNSS)是常用的传感器。本文将介绍基于卡尔曼滤波的IMU+GNSS组合导航,并将其应用于地理信息系统(GIS)中。
卡尔曼滤波是一种递归滤波算法,能够根据系统的动态模型和测量数据来估计系统的状态。在IMU+GNSS组合导航中,IMU提供了惯性测量数据,如加速度计和陀螺仪的输出;而GNSS则提供了位置和速度的测量值。通过将IMU和GNSS的数据进行融合,可以克服各自的局限性,提高导航的精度和鲁棒性。
以下是基于卡尔曼滤波的IMU+GNSS组合导航的源代码示例(使用Python语言):
import numpy as np
def imu_measurement_update(x, P, z, R):