Safe APF算法和动态窗口实现机器人路径规划

139 篇文章 ¥59.90 ¥99.00
本文详细阐述了Safe APF算法和动态窗口方法在机器人路径规划中的应用。Safe APF通过安全区域边界避免障碍物,动态窗口方法通过搜索速度和方向生成最佳路径。并提供了MATLAB代码实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器人路径规划领域,Safe APF(Augmented Potential Field)算法和动态窗口方法是常用的技术。Safe APF算法通过结合人工势场和安全区域边界的方法,使得机器人能够避开障碍物并保持一定的安全距离。而动态窗口方法则利用机器人的运动动态性质,通过搜索可行的速度和方向来生成最佳路径。本文将详细介绍Safe APF算法和动态窗口方法的原理,并提供相应的MATLAB代码实现。

一、Safe APF算法

Safe APF算法是基于人工势场方法的一种改进算法,能够解决传统人工势场算法存在的局部最小和悬停问题。其基本思想是引入安全区域边界,通过增加边界力场来保持机器人与障碍物之间的安全距离。

以下是MATLAB代码实现Safe APF算法的示例:

function path = safeAPF(start, goal, obstacles)
    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值