MATLAB中数据归一化方法

139 篇文章 ¥59.90 ¥99.00
本文介绍了MATLAB中三种数据归一化方法:最小-最大缩放、Z标准化和小数定标,提供了相应的源代码。这些方法用于预处理数据,使其具有相似尺度和分布,有助于提升数据处理和分析效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据归一化是一种常用的数据预处理技术,通过将数据映射到特定范围内,使得数据具有相似的尺度和分布。在MATLAB中,有多种方法可以实现数据归一化,包括最小-最大缩放、Z标准化和小数定标等。下面将介绍这些方法的原理和相应的源代码。

  1. 最小-最大缩放(Min-Max Scaling)

最小-最大缩放是一种常用的数据归一化方法,可以将数据线性映射到指定的范围内,通常是[0, 1]或[-1, 1]。其公式如下:

normalized_data = (data - min(data)) / (max(data) - min(data));

其中,data是待归一化的数据向量或矩阵。下面是一个示例代码:

data = [1, 2, 3, 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值