- 博客(505)
- 收藏
- 关注
原创 大模型简史:从Transformer(2017)到DeepSeek-R1(2025)
语言模型(Language Models, LMs)是预测序列数据(如文本)概率分布的数学模型。其核心任务是给定前文预测下一个词的概率。1.1 大型语言模型(LLMs)LLMs是参数量超过亿级的语言模型,通过海量数据预训练获得通用语言理解能力。例如,GPT-3(1750亿参数)能够生成连贯文本、翻译语言甚至编写代码。1.2 自回归语言模型自回归模型(如GPT系列)通过从左到右逐个生成词来构建文本,其核心公式为:这种生成方式使其在文本生成任务中表现卓越。1.3 生成能力。
2025-06-06 19:41:33
409
原创 大模型微调实战指南:从理论到实践
模型微调(Fine-tuning)技术摘要 模型微调指基于预训练大模型(如GPT、BERT)在特定领域数据上的二次训练,保留通用能力的同时提升专业性能。核心方式包括: 全量微调:更新所有参数,适合大数据场景; 部分微调(冻结/渐进解冻):平衡效率与效果; 参数高效微调(PEFT,如LoRA):低资源适配。主流框架包括HuggingFace Transformers、DeepSpeed和PEFT库,选择依据数据规模。 关键实践:数据质量>数量(如医疗领域需病例文献)、学习率2e-5等超参优化、评估需兼顾通用与
2025-06-06 15:08:56
513
原创 Windows用户福音 | 全网最全MCP实战指南(附资源导航+避坑手册)
MCP(ModelContextProtocol)作为连接AI模型与开发环境的协议框架,正随智能体技术发展受关注。文章提供Windows系统安装指南:推荐Cursor内置方案或VSCode插件扩展,并给出环境准备要点。针对MCP生态混乱问题,梳理了官方及第三方优质资源渠道,包括GitHub核心库和中文友好平台。通过Python自动化报表和前端智能补全两个场景展示MCP的实战应用,最后给出Windows特有问题解决方案。全文旨在帮助开发者快速掌握MCP技术,提升开发效率。
2025-06-05 20:10:05
187
原创 跨模态大模型开发实战:从原理到企业级应用全流程指南
本文系统阐述了多模态AI技术的核心架构与应用实践。首先解析了跨模态基础架构,包括编码塔、融合层和解码器三大组件,以及基于对比学习的预训练范式。其次详细介绍了图文描述模型BLIP-2和文生视频模型AnimateDiff的本地化部署方案,涵盖模型量化、GPU加速等优化技巧。在应用层面,重点展示了视觉问答、情感计算等典型任务的实现方法,以及医疗领域DICOM影像分析和多模态病历处理的专项突破。最后给出了企业级优化方案,包括混合精度训练和多卡推理加速技术,并以工业质检和智能座舱为例,展示了多模态技术的落地场景。全文
2025-06-05 16:58:48
271
原创 AI大模型智能体开发实战:从原理到企业级应用全解析
文章摘要:本文系统解析了智能体开发技术,涵盖理论基础与实践应用。首先剖析Agent智能体三要素(感知-决策-执行)和强化学习原理,对比ReAct等主流框架。其次详细讲解Dify平台在Agent生命周期管理和快速开发中的应用,包括数据处理、模型训练等全流程配置。然后深入LangGraph框架的分布式架构设计,展示多Agent协同工作流构建方法。实战部分呈现智能客服和金融风控两大场景,涉及混合检索增强、记忆架构等优化策略。最后探讨混合检索、记忆增强等进阶技术,为复杂业务场景提供解决方案。全文贯穿代码示例和技术要
2025-06-04 20:07:19
857
原创 AI大模型开发实战:RAG工程化与LLMOps全流程解析
摘要:RAG(检索增强生成)技术通过结合外部知识检索与生成模型提升大模型的专业准确性。其核心包括知识加载、分块处理、向量化存储、语义检索和生成增强五大模块。Self-RAG创新引入反思标记实现动态检索控制。Embedding模型通过向量空间捕捉语义关联,并可通过微调适配垂直领域。LlamaIndex框架提供完整的RAG解决方案,支持多模态和知识图谱增强。Dify平台实现从数据标注到监控的全生命周期管理。RAG优化策略包括分级缓存、模型量化和异步处理等,有效解决大模型在专业场景的应用问题。
2025-06-04 16:37:10
1267
原创 无敌!浅谈Agent的五重境界
摘要: Agent发展经历了从工具型到通用智能的五重境界。早期工具型Agent(如AutoGPT)依赖预设流程,灵活性低;认知型Agent(如ReAct)提升了推理能力;环境交互Agent(如BrowserGPT)结合多模态实现网页操作;自主Agent(如Devin)支持复杂规划;终极形态端到端通用Agent(如OpenAI DeepResearch)将内化所有能力,动态完成目标。2025年趋势是减少人工框架设计,强化模型原生智能(动态规划、记忆压缩、实时反思),关键技术包括长上下文管理、RAG检索、因果推
2025-06-03 16:48:39
604
原创 大模型Prompt工程实战教程:从设计原则到行业应用
《Prompt工程实践指南》摘要:本文系统介绍了Prompt设计三大核心原则(清晰性、上下文控制和角色设定),通过代码示例演示了如何优化AI模型输出。文章详细解析了Prompt优化的三大技巧:迭代测试、Few-shot学习和思维链应用,并以智能客服系统为案例展示综合实现。关键实践建议包括:结构化Prompt设计、3-5个示例的最佳数量、不同场景的温度参数设置(创造性0.7-1.0,严谨回答0.2-0.5),以及上下文窗口的平衡管理。本指南为开发者提供了可落地的Prompt工程方法论。
2025-05-30 20:35:14
233
原创 3分钟读懂RAGFlow:从 0 到 1教你搭建RAG知识库
RAGFlow是一款基于检索增强生成技术的开源知识库解决方案,可将PDF、Word等文档快速转化为可检索知识库,实现精准问答。其核心功能包括智能解析复杂格式文档、混合检索提升相关性以及可视化全流程操作。系统采用Docker一键部署,支持本地和API两种模型接入方式。使用流程包括账号注册、模型配置、知识库创建(可批量上传文档)及效果验证。实践表明,文件解析精度、Embedding质量和LLM性能是提升RAG系统准确率的三大关键点,直接影响最终问答效果。该系统特别适合处理多格式非结构化文档的知识管理场景。
2025-05-30 16:57:08
325
原创 用代码和故事看懂AI大模型:从原理到实践全攻略
《厨房里的AI烹饪课:大模型实践入门指南》通过烹饪比喻生动讲解AI大模型原理:数据如菜谱、训练如学厨、调参如控火。文章提供Python实践路径,从5行代码快速体验文本生成,到Transformer核心代码解析,再到训练自定义模型。包含环境配置、注意力机制可视化、调试技巧和项目升级路线,并附智能菜谱生成器完整示例。该指南将复杂的大模型技术转化为可操作的代码实践,帮助开发者像学做菜一样掌握AI模型开发,从原理理解到实际应用形成完整学习闭环。(149字)
2025-05-29 22:02:54
274
原创 大模型高效微调与部署优化技术实战指南
掌握“微调-压缩-部署”全链路技术,是构建企业级大模型应用的核心竞争力。建议从垂直场景切入,通过工具链组合实现最佳性价比。
2025-05-29 16:33:31
371
原创 大模型开发工具链全景指南:从框架选型到生产部署
掌握工具链的本质是理解不同阶段的技术需求。建议在真实项目中实践工具组合(如LangChain+PyTorch+ONNX),逐步构建标准化开发流程。
2025-05-28 21:42:50
582
原创 Transformer到MoE:聚客AI大模型核心技术栈完全指南
本文系统解析了大模型技术栈,涵盖Transformer架构原理、训练部署全流程及前沿发展方向。核心内容包括:1)自注意力机制与位置编码实现;2)分布式训练与LoRA微调实战;3)ONNX推理优化与微服务架构设计;4)MoE、量子化注意力等前沿技术。强调理论实践结合,建议从单点突破到系统构建,并配套提供书籍、视频、项目源码及面试题库等学习资源,助力实现技术闭环与应用落地。
2025-05-28 17:34:29
477
原创 大模型应用开发实战:RAG驱动的智能体开发全解析
RAG(检索增强生成)技术通过结合外部知识库与大模型,有效解决传统智能体在知识时效性、领域专业性和可信度验证方面的局限。其工业级开发采用四步法:知识库构建、多模态检索设计、上下文增强和闭环验证。金融风控智能体案例展示了从多源数据加载到可视化报告生成的全流程实现。针对性能优化提出分层索引、向量压缩等六大策略。未来RAG将向动态知识图谱、多模态检索等方向发展。学习路径包括理论书籍、视频教程、项目实战和面试准备,形成完整的学习闭环。
2025-05-27 19:36:40
884
原创 大模型应用开发实战:AI Agent与智能体开发技术解析
AIAgent是基于大模型的自主任务执行系统,具备自主规划、工具调用和多轮交互能力。其技术架构包含意图理解、任务拆解和工具调度模块,依托LangChain等框架实现功能。通过示例展示了智能客服Agent的开发过程,包括定义工具集、构建执行链和多轮对话实现。关键技术涉及Chain-of-Thought提示工程和防"模型幻觉"策略,进阶技巧包括长上下文记忆优化和性能调优。未来趋势将向多模态、轻量化部署和安全机制发展,建议从简单任务入手逐步实现商业落地。
2025-05-27 16:57:38
1527
原创 RAG技术深度解析:2024年架构演进与实战经验沉淀
在2023年之前,RAG(检索增强生成)的核心技术——检索增强(Retrieval-Augmented)已在智能问答系统中广泛应用,但直到大模型(LLM)的爆发式增长,RAG才真正成为企业级AI落地的核心范式。2024年,随着技术细节的深度优化与行业需求的碰撞,RAG技术逐渐从“架构探索”转向“工程化实践”,并在知识管理、企业服务等领域展现出不可替代的价值。:在TorchV AI系统中,通过NLU(自然语言理解)提取用户意图,仅当匹配预设的“系统槽位”(如时间、地点)时,才触发元数据过滤,避免无效检索。
2025-05-26 15:45:59
812
原创 DeepSeek R1架构与训练流程全解析
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。:引入多阶段训练管道,结合冷启动数据(Cold-Start Data)和结构化RL流程,最终形成兼具高推理性能和可读性的模型。
2025-05-25 19:31:08
550
原创 深度解析:大模型AI工具的技术演进与产业实践
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。在医疗诊断领域,这种范式已初见成效:强生医疗构建的AI工厂实现每周产出3个新模型,诊断准确率平均提升25%,开发成本降低60%。
2025-05-24 20:01:44
534
原创 基于DeepSeek构建高效RAG系统:技术解析与实战全指南
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。RAG(检索增强生成)通过动态检索外部知识库解决传统大模型的三大痛点:幻觉问题(生成虚构内容)、时效性局限(无法获取最新信息)和数据安全风险(企业数据需本地化处理)。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
2025-05-24 17:09:02
888
原创 抹平99%的AI信息差,收藏这个网站就行了!
毫不夸张地说,它直接把AI时代的信息壁垒给砸了个稀巴烂!如果你跟我一样,不甘心当个「AI小白」,2025 年想靠AI搞点副业,甚至赚到第一桶金,那这个网站绝对是你的福音!你看,这里面不光精挑细选了各种领域的 AI 工具,简直就是「AI工具大全」,一站式搞定!人家还帮你把系统性的AI论文文献都整理好了,你想学哪个,直接开啃!还有,那些大佬云集的聚合资源站点,像知名的way to AGI,也都给你总结好了!还有那些牛到飞起的播客,在这里都能找到,绝对能让你打开新世界的大门!最关键的是,它零成本啊!
2025-05-23 15:54:54
240
原创 Function Calling深度解析:从原理到跨平台调用的工程实践
是大语言模型(LLM)与外部系统交互的核心机制,允许模型通过结构化请求调用预定义功能。
2025-05-21 21:35:44
281
原创 Dify本地化部署全流程指南:从零搭建企业级AI开发平台
防火墙开放5000(后端)和3000(前端)端口。PostgreSQL和Redis服务已正常运行。域名解析已正确配置(生产环境需HTTPS)更多AI大模型应用开发学习内容
2025-05-21 17:24:28
360
原创 大模型文档处理实战:LlamaIndex核心技术与工业级应用
预处理加速Pythonfile_metadata=lambda x: {"source": x}, # 并行元数据提取num_workers=8 # 多进程加载增量索引Python学习书籍文档书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)学习视频教程。
2025-05-20 20:19:32
275
原创 智能体架构设计终极指南:从LangChain实战到工业级落地的10大模块拆解
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。:计算工具描述与用户请求的余弦相似度。:使用PPO算法优化工具选择策略。:根据输入动态选择工具。:执行前检查代码语法。
2025-05-19 21:25:25
583
原创 高级Prompt优化实战指南:从风格控制到多轮对话的工程化技巧
MarkupPythonPythonPython:使用LLM生成对话摘要PythonMarkup:"必须包含:注意力机制、位置编码":"避免提及:RNN、传统机器学习"PythonMarkupMarkupPython。
2025-05-19 17:22:49
601
原创 GPU与CPU深度解析:大模型时代的硬件选择与优化实战
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。:少量高性能核心(现代CPU通常4-32核),大缓存(L3缓存可达64MB):多卡互联带宽达600GB/s(比PCIe 4.0快5倍)
2025-05-18 21:02:35
525
原创 Prompt设计终极指南:从原则到实战的大模型交互艺术
精确描述任务需求(如"生成3条科技新闻标题" vs "写点科技内容"):通过指令约束输出格式(如JSON/XML/Markdown):用示例引导模型风格(Few-shot Learning)Markup劣质Prompt:请帮我写一个关于机器学习在医疗领域应用的文章,要包含至少三个具体案例,每个案例需要详细描述技术原理和实际效果,总字数不少于1000字...优质Prompt:生成一篇机器学习在医疗应用的综述,包含3个案例(技术原理+效果数据),使用Markdown分章节排版MarkupMarkup。
2025-05-18 16:34:53
751
原创 循环神经网络(RNN)深度解析:从原理到问题全攻略
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。:在句子 "动物保护组织反对用____做实验" 中,RNN可能遗忘"动物"导致填入错误答案。面试不仅是技术的较量,更需要充分的准备。
2025-05-15 22:14:47
548
原创 机器学习实战全解析:从监督学习到强化学习的开发者指南
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。在给定输入-输出对(X,Y)(X,Y)的条件下,学习从输入到输出的映射函数f:X→Yf:X→Y。:金融交易异常识别(检出率>85%)
2025-05-15 17:21:10
719
原创 卷积神经网络(CNN)开发实战指南:从原理到工业级应用
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。3×3卷积,stride=2,堆叠3层 → 最终感受野15×15。3×3卷积,stride=1,堆叠3层 → 最终感受野7×7。
2025-05-14 21:49:57
743
原创 神经网络训练全解析:从理论到实战的开发者指南
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。,使模型输出逐渐逼近真实值的过程。(如32):梯度噪声大,可能跳出局部最优。(如256):内存占用高,收敛稳定。GPU显存需求≈4×。
2025-05-14 17:04:30
833
原创 预训练模型与迁移学习全解析:从理论到实战的大模型开发指南
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。上预先训练的模型,通过自监督学习掌握基础语义理解能力,可迁移到下游任务。(双向Transformer):文本掩码预测。
2025-05-12 22:15:08
1290
原创 大模型微调全攻略:从LoRA到8bit训练的实战指南
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。大语言模型(LLM)如GPT-4、LLaMA通过预训练掌握了通用知识,但在特定领域(医疗、法律、金融)表现不足。
2025-05-09 21:34:58
894
原创 LangGraph:构建有状态大模型工作流的利器
LangGraph 是基于 LangChain 的扩展框架,专为构建有状态的大模型工作流而设计。它通过图结构定义多个执行节点及其依赖关系,支持复杂任务编排,尤其适合多智能体协作和长对话管理等场景。LangGraph 的核心优势包括状态持久化、灵活编排、容错机制和可视化调试。开发时建议遵循模块化设计、状态最小化和幂等性保证等原则。状态设计可使用 Pydantic 模型或 TypedDict 明确结构,并通过注解实现自动管理。节点函数是工作流的基本单元,支持多智能体协作。边的设计包括条件分支和循环结构,错误处理
2025-05-09 17:50:21
829
原创 AI大模型入门指南(八):蒸馏、量化、MoE、MHA
一是专家的多样化能力使MoE模型具有高度的灵活性,通过召集具有专业能力的专家,MoE模式可以承担更广泛的任务。软标签通常是教师模型的输出概率分布,它携带了更多的信息,例如类别之间的相似度,这使得学生模型能够在较少的数据和参数的情况下,学到更加丰富的知识。多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。
2025-05-08 17:46:15
659
原创 向量数据库实战指南:从相似性检索到大规模应用
(如余弦相似度、欧氏距离),实现快速近邻搜索。其核心价值在于解决传统数据库无法高效处理非结构化数据(文本、图像、音视频)的问题。:KD-Tree、Ball-Tree(适合低维数据)向量数据库(Vector Database)是专为。:将数据转换为向量(如BERT、CLIP)文本语义搜索(如ChatGPT知识库增强)设计的存储与检索系统,通过计算向量间的。多模态支持:文本、图像、自定义向量。:加速搜索(如HNSW、IVF):CLIP(联合文本-图像编码)轻量级:单机可处理百万级向量。
2025-05-08 15:57:40
669
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人