智能体架构设计终极指南:从LangChain实战到工业级落地的10大模块拆解

一. 智能体的基本架构与核心功能

1.1 智能体架构全景图

现代智能体(Agent)通常包含五大核心模块:

Markup

规划 → 记忆 → 工具 → 执行 → 反思

类比人类认知

  • 规划:制定旅行路线

  • 记忆:记住历史经验

  • 工具:使用地图APP

  • 执行:开车前往目的地

  • 反思:评估路线是否最优

image.png

二. Agents流程与决策图设计

2.1 典型决策流程

Markup

graph TD  
    A[用户输入] --> B(任务拆解)  
    B --> C{是否需要工具?}  
    C -->|是| D[选择工具]  
    C -->|否| E[直接生成]  
    D --> F[执行工具]  
    F --> G[结果解析]  
    G --> H[综合输出]  
    H --> I[反思优化]  
    I --> J[最终响应]

2.2 决策优化策略

  • 基于LLM的路由:根据输入动态选择工具

  • 置信度过滤:仅当置信度>0.7时执行动作

  • 备选路径:设置Fallback机制防止流程中断

代码示例:基于LangChain的决策路由

Python

from langchain.agents import Tool, AgentExecutor  
from langchain.agents import create_react_agent  
tools = [  
    Tool(  
        name="Search",  
        func=search_api,  
        description="用于搜索实时信息"  
    ),  
    Tool(  
        name="Calculator",  
        func=math_calculator,  
        description="用于数学计算"  
    )  
]  
agent = create_react_agent(llm, tools, prompt_template)  
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)  
agent_executor.invoke({"input": "上海今日气温是多少华氏度?"})

三. 规划(Planning)与任务拆解

3.1 规划类型

image.png

3.2 任务拆解算法

Python

from langchain_experimental.plan_and_execute import PlanAndExecute  
planner = PlanAndExecute(  
    planner=llm_planner,  
    executor=executor_chain,  
    max_iterations=3  
)  
result = planner.run(  
    "规划一次北京三日游,包含文化景点和特色美食"  
)  
print(result)

输出示例

Markup

Day1: 故宫参观 → 午餐(炸酱面) → 景山公园观景  
Day2: 颐和园 → 午餐(铜锅涮肉) → 798艺术区  
Day3: 长城 → 午餐(驴打滚) → 返程

四. 反思与改进机制

4.1 自我评估循环

Python

def self_reflect(response):  
    reflection_prompt = f"""  
    评估以下回答的质量:  
    问题:{query}  
    回答:{response}  
    评估标准:  
    - 准确性(1-5分)  
    - 完整性(1-5分)  
    - 可读性(1-5分)  
    输出改进建议:  
    """  
    return llm(reflection_prompt)  
# 执行流程  
response_v1 = agent_executor.invoke(query)  
feedback = self_reflect(response_v1)  
response_v2 = agent_executor.invoke(query + "\n优化建议:" + feedback)

4.2 外部验证机制

  • 代码验证:执行前检查代码语法

Python

import ast  
def validate_code(code):  
    try:  
        ast.parse(code)  
        return True  
    except SyntaxError:  
        return False  
if validate_code(generated_code):  
    exec(generated_code)  
else:  
    self_reflect("生成的代码存在语法错误")

五. 记忆(Memory)系统设计

5.1 记忆类型

image.png

5.2 记忆检索优化

Python

from langchain.vectorstores import FAISS  
from langchain.embeddings import OpenAIEmbeddings  
memory_store = FAISS.from_texts(  
    texts=["用户偏好素食", "上次旅行选择了文化类景点"],  
    embedding=OpenAIEmbeddings()  
)  
# 检索相关记忆  
relevant_memories = memory_store.similarity_search("推荐餐厅", k=2)  
print([doc.page_content for doc in relevant_memories])  
# 输出: ['用户偏好素食', '上次旅行选择了文化类景点']

六. 工具使用(Tools)开发实战

6.1 预制工具集(Toolkits)

常用工具类别

  • 信息检索:Google Search API、Wikipedia

  • 计算:Wolfram Alpha、Python REPL

  • 专业领域:法律条文查询、医疗知识库

代码示例:调用天气API

Python

import requests  
@tool  
def get_weather(city: str) -> str:  
    """获取指定城市当前天气"""  
    api_key = "YOUR_API_KEY"  
    url = f"http://api.weatherapi.com/v1/current.json?key={api_key}&q={city}"  
    response = requests.get(url)  
    return f"{city}气温:{response.json()['current']['temp_c']}℃"  
print(get_weather.invoke("上海"))  # 输出: 上海气温:25℃

6.2 自定义工具开发

Python

from langchain.tools import tool  
@tool  
def text_to_speech(text: str) -> str:  
    """将文本转为语音文件"""  
    from gtts import gTTS  
    import io  
    tts = gTTS(text=text,)  
    mp3_file = io.BytesIO()  
    tts.write_to_fp(mp3_file)  
    return mp3_file  
# 集成到智能体  
tools.append(Tool(  
    name="TTS",  
    func=text_to_speech,  
    description="文本转语音工具"  
))

七. 执行(Action)系统优化

7.1 动作选择策略

  • 基于嵌入相似度:计算工具描述与用户请求的余弦相似度

  • 强化学习训练:使用PPO算法优化工具选择策略

代码示例:工具选择器

Python

from sklearn.metrics.pairwise import cosine_similarity  
def select_tool(query, tools):  
    query_embed = embed(query)  
    tool_embeds = [embed(t.description) for t in tools]  
    similarities = cosine_similarity([query_embed], tool_embeds)[0]  
    return tools[similarities.argmax()]  
selected_tool = select_tool("计算圆的面积", tools)  
print(selected_tool.name)  # 输出: Calculator

7.2 容错执行机制

Python

try:  
    result = selected_tool.run(inputs)  
except Exception as e:  
    logger.error(f"工具执行失败: {str(e)}")  
    result = llm(f"工具{selected_tool.name}执行失败,请重新尝试。错误信息:{str(e)}")

image.png

:本文代码需配置OpenAI API密钥及安装:

Bash

pip install langchain openai fastapi gtts scikit-learn

 学习书籍文档

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

学习视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。

在这里插入图片描述

项目实战源码

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值