Function Calling深度解析:从原理到跨平台调用的工程实践

一. Function Calling 概念与应用

1.1 什么是Function Calling?

Function Calling 是大语言模型(LLM)与外部系统交互的核心机制,允许模型通过结构化请求调用预定义功能。其核心价值在于:

  • 能力扩展:突破模型固有知识限制(如实时数据获取)

  • 精准控制:约束输出格式(JSON/XML)确保下游系统兼容

  • 动态路由:根据上下文选择最佳工具链

典型应用场景

  • 实时天气查询:模型生成 {"location":"北京"},触发天气API调用

  • 数据库操作:将自然语言转换为SQL查询

  • 多模型协作:GPT-4生成代码 → 文心ERNIE执行行业知识校验

image.png

2. Function Calling 实现过程

2.1 基础实现四步法

Python

import openai  
import requests  
# 1. 定义功能描述  
functions = [  
    {  
        "name": "get_weather",  
        "description": "获取指定城市的天气信息",  
        "parameters": {  
            "type": "object",  
            "properties": {  
                "location": {"type": "string", "description": "城市名称"}  
            },  
            "required": ["location"]  
        }  
    }  
]  
# 2. 模型解析请求  
response = openai.ChatCompletion.create(  
    model="gpt-4",  
    messages=[{"role": "user", "content": "北京今天气温如何?"}],  
    functions=functions  
)  
args = json.loads(response.choices[0].message.function_call.arguments)  
# 3. 调用外部功能  
def get_weather(location):  
    api_url = f"https://api.weather.com/v3/?location={location}"  
    return requests.get(api_url).json()  
weather_data = get_weather(args["location"])  
# 4. 结果整合输出  
final_response = openai.ChatCompletion.create(  
    model="gpt-4",  
    messages=[  
        {"role": "user", "content": "北京今天气温如何?"},  
        {"role": "function", "name": "get_weather", "content": str(weather_data)}  
    ]  
)  
print(final_response.choices[0].message.content)

三. 跨系统与跨语言调用

3.1 API与RPC方案对比

image.png

代码示例:FastAPI实现REST服务

Python

from fastapi import FastAPI  
app = FastAPI()  
@app.post("/weather")  
def weather_api(location: str):  
    # 模拟天气数据  
    return {"temp": 25, "humidity": 60}  
# 启动服务  
# uvicorn main:app --port 8000

代码示例:gRPC服务定义

Markup

syntax = "proto3";  
service WeatherService {  
  rpc GetWeather (Location) returns (WeatherData) {}  
}  
message Location {  
  string name = 1;  
}  
message WeatherData {  
  int32 temp = 1;  
  int32 humidity = 2;  
}

四. Function Calling 优化策略

4.1 性能优化方案

  • 异步IO:并行处理多个调用请求

Python

import asyncio  
async def async_get_weather(location):  
    async with aiohttp.ClientSession() as session:  
        async with session.get(f"https://api.weather.com/{location}") as resp:  
            return await resp.json()  
# 批量处理  
locations = ["北京", "上海", "广州"]  
tasks = [async_get_weather(loc) for loc in locations]  
results = await asyncio.gather(*tasks)
  • 缓存机制:减少重复调用

Python

from functools import lru_cache  
@lru_cache(maxsize=100)  
def get_weather_cached(location: str):  
    return get_weather(location)

4.2 稳定性保障

  • 重试策略:指数退避重试

Python

import tenacity  
@tenacity.retry(  
    stop=tenacity.stop_after_attempt(3),  
    wait=tenacity.wait_exponential(multiplier=1, max=10)  
)  
def call_external_api(url):  
    response = requests.get(url)  
    response.raise_for_status()  
    return response.json()
  • 熔断机制:防止级联故障

Python

from circuitbreaker import circuit  
@circuit(failure_threshold=5, recovery_timeout=60)  
def critical_api_call():  
    # 关键业务调用

五. 总结

核心设计原则

接口标准化:使用Protocol Buffers或OpenAPI规范

超时控制:设置全局超时(如gRPC默认5秒)

监控埋点:追踪调用耗时与成功率

附:工具与资源推荐

image.png

image.png

:本文代码需安装以下依赖:

Bash

pip install openai fastapi grpcio tenacity circuitbreaker aiohttp

### 如何在 DeepSeek 中调用外部函数 为了理解如何在 DeepSeek 中调用外部函数,可以借鉴其他平台和工具链中的实现方式。通常情况下,在集成不同编程环境的功能时,主要依赖于特定的语言绑定或接口机制。 #### 利用语言互操作性特性 对于像 C 和 C++ 这样的低级语言,可以通过 `extern "C"` 来确保名称不会被修饰,从而允许从其他模块访问这些函数[^1]。这同样适用于任何支持此特性的高级框架或库,包括可能用于构建 DeepSeek 的组件。 当涉及到更复杂的场景,比如将 Python 或 JavaScript 函数封装到另一个环境中执行时,则需考虑使用相应的桥接技术或是 API 接口来完成跨语言调用。例如,在 Flutter 应用程序中利用 Firebase Cloud Functions 调用 OpenAI API 就是一个很好的例子[^3]。 #### 创建适配层 如果目标是在 DeepSeek 内部调用来自另一种语言编写的外部功能,那么创建一个中间件可能是必要的解决方案之一。这个中间件负责处理两种运行时之间的通信协议转换工作,并提供简单易用的方法给开发者去间接地调用那些原本不属于当前系统的资源和服务。 具体来说: - 对于静态链接库形式存在的 C/C++ 代码片段,可以直接引入并声明其原型定义; - 如果是动态加载类型的共享对象文件 (.so),则可通过 dlopen() 系列函数获取句柄进而定位所需符号地址; - 面向 WebAssembly (Wasm) 输出的目标产物,可借助 WASI 标准或其他类似的沙盒化方案来进行交互操作。 ```cpp // 假设有一个名为 'my_function' 的 C 函数存在于某个 .so 文件里 void* handle = dlopen("./libexample.so", RTLD_LAZY); if (!handle) { fprintf(stderr, "%s\n", dlerror()); exit(EXIT_FAILURE); } typedef void (*func_ptr)(); *(func_ptr*)(&my_function) = dlsym(handle, "my_function"); if ((error = dlerror()) != NULL) { fprintf(stderr, "%s\n", error); exit(EXIT_FAILURE); } (*my_function)(); dlclose(handle); ``` 上述代码展示了如何在一个 POSIX 兼容的操作系统上打开一个已编译好的动态链接库,并从中提取指定名字的过程入口点以便后续调用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值