- 博客(51)
- 收藏
- 关注
原创 效能度量-燃烧图
超前警惕 “虚假繁荣”:定期校验已完成任务的质量(如开发提测后,强制通过测试才算完成 ),避免返工拖累后期。滞后聚焦 “卡点解决”:每天同步阻塞任务,拉通资源 / 依赖方,小步快跑解决问题。追平关注 “趋势变化”:若因返工 / 降速导致追平,立即复盘优化;若因基准线调整,确保新计划合理。进度波动的本质是 **“计划预期” 与 “实际执行” 的博弈 **,抓住资源、需求、质量三个核心,就能有效控节奏~
2025-06-25 12:33:57
642
原创 研发效能提升--质量改进完美闭环
用“人(职责 / 能力)→ 流程(研发 / 问题处理)→ 数据(度量 / 分析)→ 文化(意识 / 战略)”形成闭环:先靠 “人” 明确责任、提升能力;用 “流程” 规范动作、减少混乱;拿 “数据” 验证效果、指导优化;借 “文化” 持续牵引、沉淀体系。这四个维度层层递进,覆盖 “执行 - 监控 - 优化 - 传承”,质量改进才能真正落地、持续生效~质量改进没有固定套路,但一定要 “找准痛点、选对方法、落地执行、数据验证”,不管什么行业,抓住这几点,质量提升就成功了一半~
2025-06-11 17:42:04
641
原创 4 CI/CD 工具链的集成与应用:构建高效稳定的软件交付流水线
是什么?构建工具用于自动化软件的编译、打包等过程,将源代码转换为可执行的软件制品。常见的构建工具包括 Maven(Java)、Gradle(多语言支持)、Webpack(前端)等。为什么需要?手动构建过程繁琐且容易出错,不同开发环境可能导致构建结果不一致。构建工具可以统一构建流程,确保在不同环境下都能得到相同的构建结果。解决问题?解决了构建过程的重复性劳动问题,提高了构建的准确性和效率,避免了因环境差异导致的构建失败。如何使用?以 Maven 为例,在项目根目录pom.xml<build>
2025-04-12 07:30:00
736
原创 3-2 版本控制之GitFlow 开发模式
GitFlow 开发模式是一种更加复杂和规范的分支开发模式,它定义了多个长期分支和临时分支。主要包括以下几种分支:1. 主分支(master):用于存储稳定的、可发布的代码版本。2. 开发分支(develop):用于集成新功能和修复问题,是开发的主要分支。3. 特性分支(feature branches):从开发分支创建,用于开发新功能。4. 发布分支(release branches):从开发分支创建,用于准备新的版本发布。在发布分支上进行最后的测试和修复,完成后合并到主分支和开发分支。
2025-04-11 07:30:00
909
原创 3 版本控制:GitLab、Jenkins 工作流及分支开发模式实践
GitLab 集成了版本控制、代码审查、问题跟踪等多种功能,形成了一套完整的开发工作流。代码托管:开发团队将代码存储在 GitLab 仓库中,利用 Git 的分布式版本控制特性进行代码管理。团队成员可以克隆仓库到本地进行开发。分支管理:根据项目需求创建不同的分支,如主分支(main 或 master)用于稳定版本的代码,开发分支(develop)用于集成新功能,特性分支(feature branches)用于开发具体的新功能或修复问题。代码提交与合并请求。
2025-04-09 16:49:48
1085
原创 2 持续集成:GitLab CI/CD 与 Jenkins CI/CD 的全面剖析
GitLab CI/CD 是 GitLab 平台自带的持续集成和持续部署解决方案。GitLab 作为一个功能强大的代码托管平台,集成了版本控制、代码审查、问题跟踪等多种功能。GitLab CI/CD 紧密结合这些特性,用户只需在项目根目录下创建一个文件,即可定义项目的 CI/CD 流水线。该文件使用 YAML 格式,清晰地描述了从代码拉取、构建、测试到部署的各个阶段和步骤。同时,GitLab 提供了可视化的界面,方便用户监控和管理流水线的执行情况。Pipeline 是持续集成和持续部署过程中的核心概念,
2025-04-08 18:37:31
1165
原创 1 深入理解 DevOps 与 CI/CD:概念、流程及优势
在当今快速发展的数字化时代,成为企业在激烈竞争中脱颖而出的关键因素。DevOps 和 CI/CD 作为现代软件开发领域的重要理念和实践,正深刻地改变着软件开发生命周期的运作方式。本文将深入探讨 DevOps 的概念,详细解析 CI/CD 的内涵、管道阶段以及实施 CI/CD 所带来的诸多好处,并分享一些成功实施的案例。
2025-04-08 17:35:45
1206
3
原创 11 逻辑回归:如何预测用户是否会购买商品?
逻辑回归算法是机器学习领域中经典的分类算法,作为产品经理,我们要掌握它的核心原理、应用场景以及优缺点。逻辑回归的核心原理就是在线性回归模型基础上,把原有预测的连续值转化成一个事件的概率,用来解决分类问题。在实际应用中,逻辑回归也可以在线性回归的基础上做进一步预测。比如说,线性回归可以用来预测身高、销售额、房价、库存是多少,逻辑回归就可以预测身高是高了还是矮了,预测销售额提升了还是降低了,预测房价涨了还是跌了,预测库存够用还是不够用等等。
2025-03-28 15:00:16
711
原创 13决策树与随机森林:如何预测用户会不会违约?
今天,我们讲了决策树、随机森林的原理、应用和优缺点。理解决策树是理解随机森林和集成学习的基础,不过,作为产品经理,我们的重点不在于理解决策树的生成过程,只是借着它的生成加深对决策树原理和应用的理解。总的来说,关于决策树和随机森林,我希望你重点记住这 5 点:1. 决策树就是一种树形结构的算法,它很直观,可视化很强,但也容易过拟合;2. 决策树特征选择是生成决策树的基础,不同的算法对应了不同的特征选择方式;3. 集成学习是多个机器学习算法的结合;4. 随机森林是集成学习中的一种,由多棵决策树组成;
2025-03-27 17:09:16
566
原创 朴素贝叶斯:文本处理中的分类利器
在大数据与人工智能时代,文本处理任务无处不在,如垃圾邮件分类、用户情感预测等。朴素贝叶斯算法凭借简洁的原理和高效的计算,成为文本处理领域的经典方法。它如何在这些场景中发挥作用?让我们深入探索。
2025-03-24 22:06:14
738
原创 12朴素贝叶斯:让AI告诉你,航班延误险该不该买?
今天,我带你一起学习了第三个分类算法,朴素贝叶斯。作为产品经理,我们首先要记住,这个算法的核心来自于贝叶斯公式,算法的前提假设是,算法中各个条件相互独立、互不影响。同时,为了帮助你加深理解,我也把它的原理和基础概念总结在了下面的表格里。接着,我们要重点掌握朴素贝叶斯的应用场景,我从两个方面帮你做了总结。从算法适合的场景上来说,朴素贝叶斯比较适合用于垃圾邮件分类,用户情感预测这些和文本处理相关的场景,这些场景中,算法依赖的条件相互之间比较独立,所以适合用朴素贝叶斯算法来做。
2025-03-24 21:49:28
63
原创 10线性回归:教你预测,投放多少广告带来的收益最大
线性回归算法也是机器学习领域中的入门算法,主要用来预测具体的连续性数值。今天,我带你总结了它的核心原理、应用场景以及优缺点。首先,线性回归的核心原理,就是根据原有数据通过线性回归方程 Y = AX + B,把已有数据代入到这个方程里,求出一组 A 和 B 的最优解,最终拟合出一条直线,然后通过每个数据到直线的距离最短,也就是损失函数最小。这样一来,我们就能通过这个最优化的 A 和B 的值,估算出新的数据 X 和 Y 的关系,进行数据的预测。
2025-03-19 23:48:50
65
原创 09K近邻算法:机器学习入门必学算法
KNN 算法是机器学习领域中的入门级算法,作为产品经理,我们要掌握它的核心原理、应用场景以及优缺点。KNN 核心原理你可以理解为“近朱者赤近墨者黑”,即基于距离的一个简单分类算法。在数据量不多,特征都相对单一的业务场景下(如我们课程中的例子)很适合选择 KNN 算法。因为构建起来不复杂,所以当团队中缺少算法同学的情况下,产品经理就可以提出建设性的建议,根据场景特点来选型 KNN 算法。这样,工程研发同学也可以通过学习完成算法的实现,最终实现业务需求。
2025-03-18 23:50:25
52
原创 探秘聚类算法:层次、原型与密度聚类的奇妙世界
层次聚类、原型聚类(K-means)、密度聚类(DBSCAN)以独特方式解读数据,在学术研究、商业分析、交通管理等领域发挥关键作用。它们如同数据世界的魔法工具,让数据背后的规律清晰显现,为数据驱动的行业发展打开新窗口,推动各领域不断前进。
2025-03-16 20:31:22
249
原创 08算法全景图:AI产品经理必须要懂的算法有哪些?
今天,我结合三大类问题,给你讲了三大类常见算法和它们的应用场景。为了方便你的记忆,我把重点内容整理成了一张知识脑图,你可以去文稿中看一看,这里我就不重复了。这里,我还想结合这三类算法,再给你举几个常见的应用场景,因为知道什么场景下使用什么算法来解决是我们最需要掌握的。如果你希望知道你的用户会不会购买某个商品,你的用户在你们平台借款之后会不会不还钱,或者你想知道你的用户会不会购买你们平台的会员卡,这些就属于分类问题了,你们的算法工程师可能会选择逻辑回归,决策树来实现你的需求。
2025-03-16 20:28:39
62
原创 算法模型选择的底层逻辑:不是选 “最好的”,而是选 “最痛的”
回到开篇的问题:为什么银行用逻辑回归,抖音用 Transformer?因为银行的 “最痛处” 是 “无法解释的监管风险”,而抖音的 “最痛处” 是 “用户不点击的机会成本”。算法模型从来不是 “技术最优解”,而是业务风险的对冲工具走在监管钢丝上的金融,需要 “防滑的布鞋”(可解释性);奔跑在增长赛道上的互联网,需要 “竞速的跑鞋”(效果优先)。如果这个模型出了问题,公司最害怕的是什么?答案,就是你该选择的模型。附录:模型选择决策清单行业是否有强制可解释性要求?(如金融、医疗→是)
2025-03-15 13:28:23
782
原创 07AI模型的构建过程是怎样的(下)
你好,我是舒旻。上节课,我们讲了一个模型构建的前 2 个环节,模型设计和特征工程。今天,我们继续来讲模型构建的其他 3 个环节,说说模型训练、模型验证和模型融合中,算法工程师的具体工作内容,以及 AI 产品经理需要掌握的重点。
2025-03-13 00:02:04
105
原创 06AI 模型的构建过程是怎样的?(上)
网络关系型数据和前三类数据差别非常大,前三类数据描述的都是个人,而网络关系型数据描述的是这个人和周围人的关系。比如说,在京东购物时,你和一个人在同一收货地址上,如果这个收货地址是家庭地址,那你们很可能就是家人。如果在同一单位地址上,那你们很可能就是同事,这代表着一个关系的连接。提取这类特征其实就是,根据复杂网络的关系去挖掘任意两人关系之间的强弱,像是家庭关系、同学关系、好友关系等等。
2025-03-08 15:00:12
115
原创 05通过一个 AI 产品的落地,掌握产品经理工作全流程
当决定实现这个产品之后,首先我们要做的就是定义产品需求,明确做这件事情的背景、价值、以及预期目标都是什么。在这个环节中,我们会和业务方共同沟通,来决定我们的业务预期目标是什么期望什么时候上线。这里,我提到的业务方可能是运营同学,也可能是商务同学,这和你是一个ToC 还是 ToB 的产品经理相关。在这个预测用户流失的项目中,我的业务方就是运营,我们的期望是通过算法找出高流失可能性的人群,对这些人进行定向发券召回。
2025-03-07 18:51:01
123
原创 构建AI行业认知框架:在面试中脱颖而出的系统性思维
人工智能(AI)行业正以前所未有的速度重塑全球经济结构,而AI产品经理作为技术与商业的桥梁,需具备对行业的深度洞察。”时,可结合数据:“AI市场年增速超30%,且从安防到元宇宙的泛化应用,为产品经理提供了跨领域创新的舞台。”时,可指出:“头部企业靠生态构建壁垒(如华为全栈AI),但细分场景仍有颠覆机会(如AIGC工具链)。”时,可答:“需协同上游芯片适配(如部署端侧模型时选择高通AI引擎),下游与客户业务流程深度耦合。从“卖技术”转向“卖效果”:AI公司需承诺业务指标(如风控模型降低坏账率10%)。
2025-03-07 17:56:41
807
原创 04过来人讲:成为AI产品经理的两条路径
总结、输出、实践,这几个词你肯定听过很多遍,但我还是要说,你可别嫌我啰嗦。学习这件事,去学习只是第一步,更重要的是做总结。但只是总结还不够,我希望你还能借着这些总结去做输出,强迫自己整理出一篇文章,或者给其他人分享。当你可以用浅显的语言把复杂的知识讲解清楚的时候,就说明你对这个知识真正掌握了。基础知识掌握之后,你就可以开始实践了。我建议你先尝试去面试一些 AI 公司,感受一下具体 AI 企业关注求职者哪些技能,他们都会提出哪些问题,再去迭代自己的技能。这样,去心仪的公司面试成功的几率就会更高。
2025-03-07 11:29:38
125
原创 03技术视角:AI产品经理需要懂的技术全景图
今天,我带你了解了 AI 产品经理应该懂的技术,以及这些技术需要掌握到的程度。对于数学统计学基础,我们只要掌握今天讲的概念定义就可以;对于模型构建过程、算法知识和模型验收,你一定要深入了解,知道它们具体的内容和原理;对于模型相关的技术名词,你只要理解我今天列举的常用名词就够了,后面在工作中你可以再慢慢积累,形成你自己的知识体系。最后,我还想再多说几句,有些同学一看到技术知识,就很容易一头扎进去。但是这些名词在转行初期,你只需要做到知其然就可以。
2025-03-06 18:49:19
171
原创 标量、向量、矩阵与张量:从维度理解数据结构的层次
模型核心功能典型数据类型应用场景CNN提取空间结构特征(图像)图像、视频计算机视觉任务RNN处理序列依赖关系(时间)文本、语音、时间序列自然语言处理、预测任务FM挖掘稀疏数据的特征组合用户 - 物品交互矩阵推荐系统、广告预估一句话区分CNN:看图片时 “拆零件再组装”。RNN:听故事时 “边听边记上下文”。FM:做推荐时 “红娘牵线,填补空白”。
2025-03-06 16:39:58
1116
原创 如何理解不同AI产品形态的设计方案差异?
硬件是用户直接接触的物理载体,外观设计需符合人体工学(如佩戴舒适性)、使用场景适配性(如工业级设备的防水防尘),以及品牌调性(如消费级产品的时尚感)。设计一款医疗级AI手持检测设备时,需优先优化握持手感和屏幕交互逻辑(硬件设计),同时确保软件算法能快速处理检测数据并输出可视化报告(软硬协同)。:硬件设计需考虑传感器布局(如摄像头位置影响识别效果)、散热能力(影响算力稳定性)、功耗与续航(移动设备的关键指标)。:需平衡灵活性与易用性,如支持自定义代码接口(满足高级用户),同时提供预设模板(服务小白用户)。
2025-03-06 14:27:42
982
原创 02个人视角:成为AI产品经理,先搞定这两个问题
在我们决定做一个 AI 产品的时候,不管是处于基础层还是技术层或者是应用层的 AI 产品经理,首要的职责都应该是去定义一个 AI 产品。这包括,搞清楚这个行业的方向,这个行业通过 AI 技术可以解决的问题,这个 AI 产品具体的应用场景,需要的成本和它能产生的价值。这就要求 AI 产品经理除了具备互联网产品经理的基础知识之外,还需要了解 AI 技术的边界,以及通过 AI 技术能够解决的问题是什么。
2025-03-06 12:13:19
75
原创 智启未来:AI 应用赋能全行业的变革之旅
效率跃迁:自动化替代重复劳动,释放人力聚焦高价值任务;体验跃迁:个性化服务提升用户满意度,增强品牌粘性;模式跃迁:数据驱动的决策机制,催生全新商业模式。未来,随着AI与行业知识的深度融合,业务流将不再是静态的“流程链条”,而是动态进化的“智能网络”,持续推动产业向更高阶的形态演进。更多内容详情请移步笔者的AI产品经理专栏😊。
2025-03-06 11:42:35
1124
原创 01行业视角:产品经理眼中的人工智能
今天,我从一个产品经理的角度,带你从全局了解了人工智能行业。在我看来,虽然人工智能可以让系统像人类一样进行理性的思考和行动,但它目前能够解决的问题还很有限。因此,人工智能未来是有无限潜力的。对于希望进入 AI 领域的产品经理来说,你只有对整个行业有一个全局的认识,才能结合自身的优势,找到最适合自己的领域和岗位。所以,这节课我们要牢牢掌握 AI 产业链的三个层级特点:基础层偏硬件,技术更底层,对人的技术能力要求最高;技术层多为 ToB 服务,对技术要求相对较高;
2025-03-06 10:36:40
322
原创 敏捷开发之自动化流水线
严重漏洞:支付接口未验证用户身份(CWE-284) → 可被恶意代付。:所有环节的操作日志自动关联到责任人(Git提交记录/JIRA任务):每日站会同步阻塞点(例:安全团队发现漏洞但开发资源不足时优先处理)1. 测试工程师周测试:未覆盖"同一订单多次回调"场景 → 扣绩效分。:环节间交接必须通过标准交付物(如安全扫描报告必须含责任人签名)2. 方法长度超过500行 → 责任人:前端工程师(刘欣)3. 安全陈安全:审查时未识别该风险 → 连带责任。责任人处理状态:张伟 - 修复中(剩余1天)
2025-03-03 14:27:18
767
原创 敏捷开发之分支管理策略
通过这样的分支管理策略,“商品推荐” 和 “用户评价” 两个功能的开发和测试可以并行进行,提高了整个项目的开发效率,同时保证了代码的稳定性和可管理性。
2025-03-03 12:01:59
565
原创 打造高效敏捷交付团队:实现快速价值流转
在如今瞬息万变的市场环境中,对于产品开发测试的融合团队来说,构建一支高效的敏捷交付团队,是实现快速价值流转、提升企业竞争力的核心要素。以下将从组织、管理、技术、工具和人员等多个关键方面,深入探讨如何打造这样一支卓越的团队。 高效的敏捷交付团队是承接优质需求的首要前提。在实际业务中,市场需求和用户问题复杂多变,只有具备敏捷思维和高效执行能力的团队,才能精准识别需求价值,将业务和用户问题及时转化为清晰、可操作的产品需求。并且,团队需要把控需求的流动性,确保其以合适的粒度进入迭代环节,从而支持团队持续、批量地交
2025-03-03 11:46:18
756
原创 敏捷开发中的依赖管理:从识别到化解的全链路策略
1、预防优于补救:早期发现依赖,避免迭代中后期暴雷;2、价值驱动决策:优先解决影响用户价值的依赖;3、拥抱灵活架构:通过解耦设计降低系统脆弱性;4、透明化协作:依赖状态全员可见,杜绝信息孤岛依赖管理不是一场“消灭战”,而是一场“控制战”。通过系统性的识别、评估、解耦与监控,团队可将依赖转化为可控变量,真正释放敏捷开发的潜力。
2025-03-02 14:26:20
761
原创 如何推进团队敏捷转型
某网络安全企业(300人研发团队)面临市场响应速度慢,软件交付周期超过6个月的问题。计划通过敏捷转型提升交付能力和交付质量。
2025-02-28 18:17:03
701
原创 敏捷开发与迭代计划会
通过“浅谈Scrum”、“Scrum事件预告前人的方法论能流传下来,足以证明方法论的可操作性,但实际情况是,只有我们充分了解这些实践方法,并能根据您所处的特定环境合理的去调整他们的时候,才是真正领悟到方法论的方法所在,不断的学习和调整才是敏捷开发的核心。一千个读者有一千个哈姆雷特,组织不同、团队不同,一样的方法论可能会产生不一样的效果,所以我不会把教科书的知识照搬下来糊弄大家,也许会有帮助,但对于我来说意义不大,我只分享我所在的组织中沉淀下来的方法论供大家参考。望读者合理运用、动态调整✊。闲聊篇。
2024-04-27 16:16:16
1304
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人