Pandas.DataFrame处理异常值的方法

df.fillna()

value : 填充静态的、字典的、数组的、系列的或DataFrame。
method : 如果用户没有传递任何值,则使用该方法。Pandas有不同的方法,如bfill、backfill或fill,分别在前向索引或前向/后向的位置上填入数值。
axis: axis对于行/列来说,需要输入int或string值。对于整数,输入可以是0或1;对于字符串,输入 “index “或 “columns”。
limit : 这是一个整数值,用于指定后续的前向/后向NaN值填充的最大数量。
downcast : 它需要一个dict,指定将什么d类型下移到什么类型。比如Float64到int64。

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(6, 3))
df.loc[1: 2, 1] = np.nan
df.loc[3, 2] = np.nan
print(df)
tmp_df = df.fillna(value=1, inplace=False, limit=1)  # 按列填充nan为value值,limit限制每列值填充一个
print(tmp_df)
tmp_df = df.fillna(inplace=False, method='ffill')  # 按列使用前一个值填充
print(tmp_df)
tmp_df = df.fillna(inplace=False, method='ffill', axis=1)  # 按行使用前一个填充
print(tmp_df)
df.fillna(inplace=True, method='bfill', axis=0)  # 按列使用后一个值填充
print(df)

df.interpolate()

用于填补数据框架或系列中的缺失值,使用插值技术填补缺失值,而不是硬编码的值。

method : linear: 默认值,使用线性插值,根据最近的两个点确定直线推算中间缺少的值;time: 当数据索引是日期时;index: 使用索引的值进行插值;polynomial: 多项式插值,需指定 order 参数,例如 order=2 用于二次多项式插值;pad/ffil:用前一个非缺失值来填充 NaN;nearest:最近的非 NaN 值;quadratic & cubic:二次和三次插值,适用于非线性数据;barycentric:重心插值。它是根据给定值的重心来计算插值的;krogh:Krogh 插值;spline:样条插值,善于处理数据集中的异常值。

‘values’, ‘zero’, ‘slinear’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘piecewise_polynomial’, ‘from_derivatives’, ‘pchip’, ‘akima’

axis : 0逐列填充,1逐行填充。
limit : 填充连续NaN的最大数量。必须大于0。
limit_direction : {‘forward’, ‘backward’, ‘both’}, default ‘forward’ 。
limit_area : 决定哪些 NaN 值应被插值,NaN 值可能出现在序列的开始或结束位置的情况
None:默认值,所有的 NaN 都可以被插值,没有任何限制。
inside:仅插值 NaN 值,如果被有效的观测值(非 NaN)包围,即如果一个 NaN 序列的前后都有非 NaN 的值,则这个 NaN 序列可以被插值,同时序列开头和结尾的连续 NaN 值不会被插值。
outside:仅插值开头或结尾的 NaN 值,中间的 NaN 序列,只要被非 NaN 值包围则不会被插值。

downcast :如果可能的话,将dtypes降级。

import pandas as pd
df = pd.DataFrame({"A": [12, 4, 5, None, 1],
                   "B": [None, 2, 54, 3, None],
                   "C": [20, 16, None, 3, 8],
                   "D": [14, 3, None, None, 6]})
print(df)
print("=" * 30)
tmp_df = df.interpolate(method='linear', limit_direction='forward', inplace=False)
print(tmp_df)
print('=' * 30)
tmp_df = df.interpolate(method='linear', limit_direction='backward', limit=1, inplace=False)
print(tmp_df)

参考:

Pandas – DataFrame.fillna() 替换DataFrame中的空值|极客教程

<think>好的,用户想了解如何在Pandas DataFrame中检测异常值。我需要整理几种常用的方法,并结合用户提供的引用内容给出解决方案。首先,异常值检测通常包括统计方法、可视化、分位数筛选等。 首先,统计方法方面,可以使用标准差或四分位距(IQR)。比如,计算Z分数来判断数据点偏离均值的程度,超过3倍标准差的数据可能被视为异常值。另外,四分位距法通过IQR = Q3 - Q1,然后设定上下限为Q1 - 1.5IQR和Q3 + 1.5IQR,超出这个范围的就是异常值。这部分需要示例代码,可能需要用到describe()函数和布尔索引。 接下来是可视化方法,用户提供的引用[3]提到了使用Matplotlib和Seaborn进行数据可视化,比如箱线图(boxplot)或直方图。箱线图能直观显示异常值的位置,可以指导用户如何用Seaborn绘制并识别异常值。 分位数筛选法,结合describe()输出的统计信息,直接筛选出超过特定分位数的数据点。例如,设定99%或1%的分位数作为阈值,超出这些值的数据点可能为异常。这需要用到quantile()函数。 此外,用户提到的引用[5]中有插值方法,虽然主要不是用于异常检测,但可能在处理异常值后的数据填充时有帮助。例如,检测到异常值后,用插值法填补空缺。不过这可能属于后续处理步骤,不是检测本身。 用户还提到isin()和~操作符(引用[1]),可能用于筛选特定值,但异常值通常不是固定的列表,所以这个方法可能不太适用。不过如果已知异常值的具体范围,可以用isin的反选来排除。 需要检查是否有其他相关引用。引用[4]关于fillna()和替换NaN值,可能和异常值处理有关联,但检测部分可能不直接涉及。但如果在检测后需要处理缺失值,可以使用fillna或replace方法(引用[2]和[4])。 综上,我应该分步骤介绍统计方法、可视化方法和分位数筛选,并给出对应的代码示例。同时,结合用户提供的引用,引用可视化部分到方法二,可能引用[3]的绘图示例。注意保持回答结构清晰,使用中文,并正确应用LaTeX格式的数学表达式,比如在IQR部分使用$Q_1$、$Q_3$等符号,用$$包围独立公式。 最后生成相关问题,可能需要包括异常值处理、可视化工具选择、不同方法的优缺点比较等。</think>在Pandas DataFrame中检测异常值可通过以下方法实现: --- ### **方法1:基于统计指标的异常值检测** 1. **标准差法** 计算数据列的均值和标准差,定义异常值为超出均值±3倍标准差范围的值: ```python z_scores = (df['column'] - df['column'].mean()) / df['column'].std() outliers = df[abs(z_scores) > 3] ``` 2. **四分位距法(IQR)** 通过四分位数定义异常值范围: $$IQR = Q_3 - Q_1$$ 异常值界限为: $$[Q_1 - 1.5IQR, Q_3 + 1.5IQR]$$ ```python Q1 = df['column'].quantile(0.25) Q3 = df['column'].quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR outliers = df[(df['column'] < lower_bound) | (df['column'] > upper_bound)] ``` --- ### **方法2:基于可视化的异常值检测** 使用`Seaborn`绘制箱线图或直方图(参考引用[3]): ```python import seaborn as sns sns.boxplot(x=df['column']) plt.title('Boxplot for Outlier Detection') plt.show() ``` 箱线图中超出箱体须部分的数据点即为异常值[^3]。 --- ### **方法3:基于分位数的筛选** 直接通过分位数设定阈值: ```python threshold_high = df['column'].quantile(0.99) # 取99%分位数 threshold_low = df['column'].quantile(0.01) # 取1%分位数 outliers = df[(df['column'] > threshold_high) | (df['column'] < threshold_low)] ``` --- ### **方法4:使用布尔索引结合条件筛选** 若已知异常值的具体范围,可用`~`取反筛选(参考引用[1]): ```python valid_values = [正常值列表] outliers = df[~df['column'].isin(valid_values)] ``` --- ### **异常值处理建议** 检测到异常值后,可: 1. **删除**:`df_clean = df.drop(outliers.index)` 2. **替换**:用中位数或插值法填充(参考引用[5]的插值方法): ```python df['column'] = df['column'].mask(df['column'] > upper_bound, df['column'].median()) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值