使用QWEN2.5-vl的function calling记录

现有在公司部署好的qwen2.5-vl 72b 的大模型,想尝试一下 function calling 的调用,由于大模型是其他团队部署,现有url只支持使用post请求的方式调用大模型,无法使用openai的格式调用,在data参数中添加‘tools’参数,无法获得请求,改为functions便可以获得post的大模型的返回,但是依旧没有调用制定的函数,因为返回的response中的tool_calls是空列表,最后咨询阿里客服才发现qwen-vl模型作为调优模型,不具有function calling 的能力。。。

参考:

OpenAI微调支持function calling

如何使用 Function Calling 功能_大模型服务平台百炼(Model Studio)-阿里云帮助中心

### Qwen2.5-VL 使用指南 #### 安装与配置 为了顺利安装并配置 Qwen2.5-VL 模型,推荐采用虚拟环境以确保项目的独立性和稳定性[^4]。具体操作如下: 对于基于 `conda` 的环境创建命令为: ```bash conda create -n qwen2.5 python=3.8 conda activate qwen2.5 pip install transformers ``` 当准备就绪后,可以从 Hugging Face 平台获取模型权重文件。考虑到网络状况等因素的影响,可以选择通过镜像站点加速下载过程[^2]。 执行以下指令完成从 hf-mirror 下载 Qwen2.5-VL-7B-Instruct 权重的操作: ```bash HF_ENDPOINT=https://hf-mirror.com huggingface-cli download \ --repo-type model \ --local-dir Qwen2.5-VL-7B-Instruct \ --local-dir-use-symlinks False \ Qwen/Qwen2.5-VL-7B-Instruct ``` 下载完成后务必验证其完整性,这是非常重要的一步,能够有效防止因数据损坏而导致后续应用出现问题。 #### 示例代码 下面给出一段简单的 Python 代码片段用于加载已下载好的预训练模型,并尝试生成文本输出: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path/to/local/model/directory") model = AutoModelForCausalLM.from_pretrained("path/to/local/model/directory") input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 此段代码展示了如何利用本地存储路径初始化 Tokenizer 和 Model 实例对象,并调用 generate 方法实现基础对话交互功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值