LIS(Longest Increasing Subsequence)

本文探讨了最长上升子序列(LIS)问题的多种解决方法,包括动态规划DP方法的时间复杂度O(n^2),以及通过二分查找优化后的O(nlogn)复杂度算法。文章提供了详细的代码实现,展示了如何利用栈结构和二分查找提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里需要注意的问题是:
寻找的是
前i个数字中最长上升子序列的长度,
还是
以第i个数字为结尾的最长上升子序列的长度

题目:
已知一个未排序的数组,求这个数组最长上升子序列的长度,
例如[1,3,2,3,1,4],
答案:4

dp方法,时间复杂度O(n2)

#include<stdio.h>
#include<iostream>
#include<vector>
using namespace std;

class Solution{
public:
    int lengthOfLIS(vector<int>& nums){
        if(nums.size()==0){
            return 0;
        }
        vector<int> dp(nums.size(),0);
        dp[0]=1;
        int LIS=1;
        for(int i=1;i<dp.size();i++){
            dp[i]=1;
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j]&&dp[i]<dp[j]+1){
                    dp[i]=dp[j]+1;
                }
            }
            if(LIS<dp[i]){
                LIS=dp[i];
            }
        }
        return LIS;
    }
};

int main(){

    int test[]={1,3,2,3,1,4};
    vector<int> nums;
    for(int i=0;i<6;i++){
        nums.push_back(test[i]);
    }
    Solution solve;
    printf("%d\n",solve.lengthOfLIS(nums));

    return 0;
}

通过设置一个栈(使用vector实现)stack,
stack[i]代表长度为i+1的上升子序列最后一个元素的最小可能取值,
即若要组成长度为i+2的上升子序列,需要一个大于stack[i]的元素,最终栈的大小,
即为最长上升子序列的长度。
时间复杂度:O(n2),
如果查找通过二分查找来实现则时间复杂度:O(nlogn)

不通过二分查找

#include<stdio.h>
#include<iostream>
#include<vector>
using namespace std;

class Solution{
public:
    int lengthOfLIS(vector<int>& nums){
        if(nums.size()==0){
            return 0;
        }
        vector<int> stack;
        stack.push_back(nums[0]);
        for(int i=1;i<nums.size();i++){
            if(nums[i]>stack.back()){
                stack.push_back(nums[i]);
            }
            else{
                for(int j=0;j<stack.size();j++){
                    if(stack[j]>=nums[i]){
                        stack[j]=nums[i];
                        break;
                    }
                }
            }
        }
        return stack.size();
    }
};//类最后是有分号的


int main(){

    int test[]={1,3,2,3,1,4};
    vector<int> nums;
    for(int i=0;i<6;i++){
        nums.push_back(test[i]);
    }
    Solution solve;
    cout<<"this is a new one"<<endl;
    printf("%d\n",solve.lengthOfLIS(nums));

    return 0;
}

这是我经历的第一次算法优化工作,纪念一下
通过二分查找:

#include<stdio.h>
#include<iostream>
#include<vector>
using namespace std;

int Binary_Search(vector<int> nums,int target){
    int index=-1;
    int begin=0;
    int end=nums.size()-1;
    //这个循环真的是精髓
    while(index==-1){
        int mid=(begin+end)/2;
        if(target==nums[mid]){
            index=mid;
        }
        else if(target<nums[mid]){
            if(mid==0||target>nums[mid-1]){
                index=mid;
            }
            end=mid-1;
        }
        else if(target>nums[mid]){
            if(mid==nums.size()-1||target<nums[mid+1]){
                index=mid+1;
            }
            begin=mid+1;
        }
    }
    return index;
};

class Solution{
public:
    int lengthOfLIS(vector<int>& nums){
        if(nums.size()==0){
            return 0;
        }
        vector<int> stack;
        stack.push_back(nums[0]);
        for(int i=1;i<nums.size();i++){
            if(nums[i]>stack.back()){
                stack.push_back(nums[i]);
            }
            else{
                int pos=Binary_Search(stack,nums[i]);
                stack[pos]=nums[i];
            }
        }
        return stack.size();
    }
};//类最后是有分号的


int main(){

    int test[]={1,3,2,3,1,4};
    vector<int> nums;
    for(int i=0;i<6;i++){
        nums.push_back(test[i]);
    }
    Solution solve;
    cout<<"this is one for BS"<<endl;
    printf("%d\n",solve.lengthOfLIS(nums));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值