目录
演示环境
系统:win11 家庭中文版22H2
操作系统版本:22621.1992
机带RAM:16GB
下载Python环境包
下载Python最新版本
如果找不到安装包可以在我这里安装:CSDN:Python安装包下载地址
注:安装的时候勾选上添加Path路径的设置,将环境变量直接设置好。
Jupyter
Jupyter Notebook官网地址:Project Jupyter | Home
最新版本的pip
注:这里如果pip不是最新版本的话请先升级
python.exe -m pip install --upgrade pip
本地安装 jupyter 命令:
pip install jupyter
安装的速度回比较快的呢。
查看安装的 jupyter 版本
启动 Jupyter Notebook
安装完成后,在命令行中输入 jupyter notebook 即可启动,然后在浏览器中打开相应的界面进行 Python 代码的编写和运行。
启动命令
jupyter notebook
启动效果
启动页面
Jupyter中文设置
安装中文包
pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
pip install jupyter_nbextensions_configurator
jupyter nbextensions_configurator enable --userpip install jupyterlab-language-pack-zh-CN
安装完毕后重新启动 【jupyter notebook】选择Settings -> Language ->简体中文即可。
选择完毕后刷新页面即可得到中文页面:
Jupyter文件夹与文件操作
新建文件夹操作,创建完毕后点击即可进入到该文件夹。
创建 Python 3 ipykernel 文件,这里内核不变即可。
写完点击运行
print("Hello World")
Jupyter开发工具对比于PyCharm的优势
Jupyter 和 PyCharm 在 Python 开发中各有优势。Jupyter 交互性强,以单元格运行代码,便于逐步调试与验证,利于数据可视化,适合初学者和教学场景。其快速原型开发能力出色,能结合代码与文档快速迭代。同时,共享和协作方便,可直接分享 .ipynb 文件,还有在线平台支持。而 PyCharm 功能丰富强大,适合大型项目开发,但学习成本高,交互性、可视化便捷度和共享协作方面不如 Jupyter。开发者可根据具体需求,如数据探索、教学或大型项目等,选择合适的工具。
对比维度 | Jupyter 优势 | PyCharm 情况 |
---|---|---|
交互性与可视化 | 1. 单元格式交互:支持以单元格为单位运行代码,方便逐步调试和验证想法,能即时看到代码输出结果。 2. 数据可视化方便:可轻松集成 Matplotlib、Seaborn 等可视化库,实时展示数据可视化效果,在数据分析和机器学习领域优势明显。 | 1. 交互性弱:主要是按顺序执行代码文件,交互过程不够直观和便捷,难以像 Jupyter 那样快速验证小段代码的效果。 2. 可视化过程复杂:虽然也能进行数据可视化,但配置和展示过程相对繁琐,不如 Jupyter 方便快捷。 |
学习与教学 | 1. 适合初学者:简洁的界面和交互方式降低了学习门槛,初学者能快速上手,专注于代码逻辑和编程学习。 2. 教学效果好:在教学场景中,教师可以逐步展示代码和讲解,学生能实时看到每一步的执行结果,增强学习效果。 | 1. 学习成本高:功能丰富但界面和配置较为复杂,对于初学者来说,掌握其各种功能需要花费一定时间和精力。 2. 教学不够直观:在教学过程中,代码的执行和讲解不够直观,学生可能难以跟上教师的思路。 |
快速原型开发 | 1. 快速迭代:可以快速编写和修改代码,立即看到结果,便于快速验证想法和开发原型。 2. 文档与代码结合:支持在代码中插入 Markdown 文本进行注释和说明,使代码更易理解,适合快速生成带有说明的原型。 | 1. 开发速度较慢:在快速原型开发时,需要创建完整的项目结构和文件,开发流程相对繁琐,速度较慢。 2. 文档功能较弱:虽然可以添加注释,但不如 Jupyter 的 Markdown 文本方便和直观,不利于快速生成带有详细说明的原型。 |
共享与协作 | 1. 易于共享:可以将 Notebook 文件(.ipynb )分享给他人,接收者能直接看到代码、输出结果和注释,方便交流和协作。2. 在线平台支持:有许多在线平台(如 Google Colab、Kaggle Kernels)支持 Jupyter Notebook,方便团队成员在不同地点进行协作。 | 1. 共享不便:主要以项目文件的形式存在,共享时需要将整个项目打包,接收者还需要进行环境配置,过程较为复杂。 2. 在线协作功能有限:虽然有一些版本控制工具辅助协作,但在线协作的便捷性不如 Jupyter 的在线平台。 |
代码可读性与注释 | 1. 注释丰富:Markdown 单元格可用于详细解释代码逻辑、算法思路和数据处理步骤,使代码更具可读性。 2. 代码结构清晰:单元格式的组织方式使代码逻辑更加清晰,不同功能的代码可以分开编写和展示。 | 1. 注释方式单一:主要通过代码中的注释符号进行注释,不够直观和丰富,对于复杂的代码逻辑解释不够清晰。 2. 代码结构相对复杂:大型项目中代码文件较多,整体代码结构的清晰程度不如 Jupyter Notebook。 |