我的创作纪念日——128天

机缘

我本身是搞数学的,有的时候搜题竟然在CSDN上搜到了答案,虽然是写的代码,但是从数学角度来说解题的思路也是非常亮眼的,所以也想在CSDN上发光发热一下,就进入到CSDN这个平台中了。


收获

过程中收获的粉丝过1000了,虽然不多,但是很满足。

三连的数据虽然一般,但是每一份点赞分享都是对我付出的一个肯定。

还在C++的一个活动中获得了第一名的成绩,非常开心的呢,得了一个大书包。


日常

我的工作的日常就是创造任何与数学相关的价值,现在很多的时候都在和AI都斗争,AI是个好东西,也很好用,但是AI对于数学来说还是一位小朋友,很多数学逻辑都没办法绕的明白,经常会出现漏解等情况,我也算是一值在想办法攻克这个难关。


成就

写的最好的一段代码到时没觉得,很多代码都很经典,就例如数组变换,将所有的0都转换成1这个操作,曾经还需要使用一个判断来操作,后来我就习惯了1-i的操作,如果是i=1就返回0,如果i=0就直接返回1,这种小方法还有很多,都很有价值的。 


憧憬

非常期待也能变成一位专家,数学专家,说每年都有博客之星的选举,希望今年能挂上一个名字,然后申请一下【数学领域优质创作者】的头衔,希望今年的年底能实现这个愿望。

留一个数学公式:

sigmoid(x) = 1/(1 + exp(-x))

Sigmoid 函数:

{sigmoid}(x) = \frac{1}{1 + e^{-x}}

是机器学习和深度学习中最常用的激活函数之一,其核心特性是将任意实数输入映射到 (0, 1) 区间内,并且具有光滑、可导的特点。它主要解决以下几类问题:

一、二分类问题(逻辑回归)

  • 核心作用:将线性回归的输出(任意实数)转换为概率值,用于判断样本属于正类或负类的概率。
    • 例如:判断邮件是否为垃圾邮件时,输出值越接近 1,属于正类(垃圾邮件)的概率越高;越接近 0 则属于负类(正常邮件)的概率越高。
  • 公式本质:在逻辑回归中,Sigmoid 函数将线性组合 \(z = \mathbf{w}^T\mathbf{x} + b\) 转换为概率 \(p = \text{sigmoid}(z)\),并基于概率构建损失函数(如交叉熵损失)进行模型训练。

二、神经网络中的激活函数

  • 引入非线性:神经网络的多层线性变换等价于单层线性变换,无法拟合复杂数据。Sigmoid 函数为神经网络引入非线性,使其能够学习数据中的复杂模式。
  • 输出范围限制:将神经元的输出压缩到 (0, 1) 区间,便于后续层处理(如作为概率输入或归一化特征)。
  • 历史应用场景:早期常用于神经网络的隐藏层和输出层(如二元分类任务的输出层),但因梯度消失问题逐渐被 ReLU 等函数替代。

三、数据归一化与概率建模

  • 归一化预处理:将数值特征压缩到 (0, 1) 区间,适用于需要归一化但不希望数据对称分布的场景(如概率相关任务)。
  • 概率建模:在生成模型(如玻尔兹曼机)中,Sigmoid 函数用于表示神经元激活的概率,或在生成概率分布时作为转换函数。

四、信号处理与生物学模型

  • 模拟神经元激活:在人工神经网络的生物学启发模型中,Sigmoid 函数近似模拟神经元的激活阈值特性(输入超过阈值时激活,输出接近 1;否则接近 0)。
  • 连续信号二值化:将连续信号转换为接近 0 或 1 的离散值,适用于需要平滑过渡的二值决策场景(如控制理论中的开关模型)。

五、优缺点分析

优点缺点
1. 输出范围明确(0, 1),适合表示概率。1. 梯度消失:当输入绝对值较大时,导数趋近于 0,导致深层网络训练困难。
2. 光滑可导,便于反向传播求导。2. 输出非零中心(Non-zero-centered),可能导致梯度更新方向偏移(如 “Z 字型” 下降)。
3. 计算简单,实现高效。3. 饱和区域(输入绝对值大)易导致神经元 “死亡”(权重无法更新)。

典型应用场景举例

  1. 逻辑回归分类:垃圾邮件检测、疾病诊断(阳性 / 阴性概率)。
  2. 神经网络隐藏层:早期多层感知机(MLP)的隐藏层激活函数(现多用于特定场景,如生成模型)。
  3. 深度学习输出层:二元分类任务的最后一层(如图像识别中 “猫” 或 “非猫” 的概率输出)。
  4. 强化学习:策略网络中表示动作选择的概率(如连续动作空间的离散化概率映射)。

与其他激活函数的对比

  • ReLU:解决梯度消失问题,但输出非负(适用于隐藏层)。
  • tanh:输出范围 (-1, 1),零中心化,适合需要对称输出的场景(如循环神经网络)。
  • Sigmoid:独特的概率解释性使其在分类任务输出层仍不可替代,但在隐藏层中已逐渐被 ReLU 家族取代。

通过 Sigmoid 函数的概率映射和非线性特性,它在分类、神经网络建模和概率分析中发挥了基础性作用,尽管存在梯度消失等缺陷,但其物理意义和数学特性使其仍是理解机器学习原理的核心概念之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值