在PyTorch框架内,执行CIFAR-100识别任务使用Vision Transformer(ViT)模型可以分为以下步骤:
- 导入必要的库。
- 加载和预处理CIFAR-100数据集。
- 定义ViT模型架构。
- 设置训练过程(包括损失函数、优化器等)。
- 训练模型。
- 测试模型性能。
示例代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights
# 1. 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 2. 加载并预处理CIFAR-100数据集
transform = transforms.Compose([
transforms.Resize((224, 224)), # ViT期望的输入尺寸
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,