Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)

本文指导如何在PyTorch中使用ViT-B-16模型处理CIFAR-100数据,涉及数据预处理、模型构建、训练策略和性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在PyTorch框架内,执行CIFAR-100识别任务使用Vision Transformer(ViT)模型可以分为以下步骤:

  1. 导入必要的库。
  2. 加载和预处理CIFAR-100数据集。
  3. 定义ViT模型架构。
  4. 设置训练过程(包括损失函数、优化器等)。
  5. 训练模型。
  6. 测试模型性能。

示例代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights

# 1. 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 2. 加载并预处理CIFAR-100数据集
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # ViT期望的输入尺寸
    transforms.ToTensor(),
    transforms.Normalize(0.5, 0.5)
])

trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
                                     
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值