✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对自行车租赁数量预测中非线性与复杂时序依赖问题,提出基于时间卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)的预测模型(TCN-GRU-Attention)。TCN 利用扩张卷积提取多尺度时序特征,GRU 捕捉序列长期依赖,注意力机制强化关键特征,三者协同提升预测精度。通过实际数据实验,该模型在均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)指标上优于传统及单一深度学习模型,为共享单车资源调度与城市交通规划提供可靠依据。
关键词
自行车租赁预测;时间卷积网络;门控循环单元;注意力机制;深度学习
一、引言
随着共享单车的普及,其租赁数量受时间、天气、节假日等多因素影响,呈现复杂非线性与动态变化特征。准确预测租赁数量,有助于优化车辆调度、降低运营成本、提升用户体验。传统预测方法如时间序列分析、回归模型,在处理复杂关系时能力有限;单一深度学习模型,如循环神经网络(RNN)及其变体 LSTM、GRU,虽能处理时序数据,但存在梯度消失、计算效率低等问题,且难以有效聚焦关键信息 。
时间卷积网络(TCN)通过因果卷积和扩张卷积,在保持计算效率的同时可捕获长序列依赖;门控循环单元(GRU)作为 LSTM 的简化变体,能有效处理长短期依赖关系;注意力机制(Attention)可使模型自动关注输入序列关键部分,增强特征表达。本文将三者结合,构建 TCN-GRU-Attention 模型用于自行车租赁数量预测,旨在突破传统方法局限,提高预测准确性与可靠性。
二、理论基础
2.1 时间卷积网络(TCN)
TCN 基于卷积神经网络,通过因果卷积和扩张卷积实现对时序数据的处理。因果卷积确保模型在预测某时刻数据时,仅使用该时刻及之前的信息,符合时序逻辑;扩张卷积通过设置扩张因子,在不增加参数数量的情况下,指数级扩大感受野,有效捕捉长序列依赖关系。TCN 网络常由多个残差块堆叠而成,每个残差块包含两个因果扩张卷积层、批量归一化层和 ReLU 激活函数,残差连接可缓解梯度消失问题,加速模型训练 。
三、TCN-GRU-Attention 模型构建
3.1 模型架构
TCN-GRU-Attention 模型由输入层、TCN 层、GRU 层、注意力层和输出层组成。输入层接收预处理后的自行车租赁相关数据;TCN 层通过因果扩张卷积提取多尺度时序特征;GRU 层进一步处理 TCN 层输出,捕获长期依赖关系;注意力层根据 GRU 层输出计算注意力权重,增强关键特征;输出层将注意力层输出映射为租赁数量预测值 。
四、结论与展望
本研究构建的 TCN-GRU-Attention 模型,通过融合 TCN、GRU 和注意力机制优势,在自行车租赁数量预测中表现出色,相比传统及单一深度学习模型,显著提高了预测精度。但研究仍有改进空间:一是可探索更多影响租赁数量的因素,如周边交通流量、人口密度等,丰富数据特征;二是优化模型结构与参数,尝试不同的注意力机制变体或调整网络层数与神经元数量;三是开展实时预测研究,结合在线学习算法,使模型适应数据动态变化,更好地服务于共享单车运营与城市交通管理 。
⛳️ 运行结果
🔗 参考文献
[1] 刘佳,马志强,刘广忱,等.多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法[J].储能科学与技术, 2024, 13(3):1009-1018.DOI:10.19799/j.cnki.2095-4239.2023.0754.
[2] 郝椿淋,张剑.基于自注意力机制TCN-BiGRU的交通流预测[J].电子测量技术, 2024, 47(8):61-68.
[3] LI Shizhe,ZHANG Tianyu,XIE Jiale.基于电池老化趋势重构与TCN-GRU-Attention网络的SOH估计[J].电力科学与工程, 2025, 41(3):38-45.DOI:10.3969/j.ISSN.1672-0792.2025.03.005.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇