基于Transformer-SVM的自行车租赁数量预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

针对自行车租赁数量预测中的非线性时序特性和多因素相关性问题,提出一种结合 Transformer 和支持向量机 (SVM) 的混合模型。Transformer 通过自注意力机制捕获时序数据中的长短期依赖关系和特征间的复杂交互,SVM 则处理特征映射和回归预测。实验结果表明,该模型在均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 等指标上显著优于传统时序模型和单一深度学习模型,能够更准确地预测自行车租赁数量的变化趋势。

关键词

自行车租赁预测;Transformer;支持向量机;深度学习;时序分析

一、引言

共享单车作为城市绿色交通的重要组成部分,其租赁数量的准确预测对车辆调度、资源分配和用户体验具有重要意义。然而,自行车租赁需求受多种因素影响,如时间、天气、节假日等,呈现出复杂的非线性和时序特性。传统的时间序列分析方法,如 ARIMA、指数平滑法等,难以有效处理这种复杂的非线性关系。近年来,深度学习模型,特别是循环神经网络 (RNN) 及其变体 LSTM 和 GRU,在时序预测领域取得了显著进展,但在处理长序列依赖和捕捉特征间复杂交互方面仍存在一定局限性。

Transformer 是一种基于注意力机制的深度学习模型,最初用于自然语言处理领域,近年来在时序预测任务中也展现出强大的能力。Transformer 通过自注意力机制能够并行处理序列中的所有位置,有效捕获长距离依赖关系。支持向量机 (SVM) 作为一种强大的机器学习算法,在处理小样本、非线性问题时表现出色。将 Transformer 与 SVM 相结合,可以充分发挥两者的优势:Transformer 用于提取时序数据的特征表示,SVM 用于基于这些特征进行回归预测。本文提出基于 Transformer-SVM 的自行车租赁数量预测模型,并通过实验验证其有效性。

二、理论基础

2.1 Transformer 模型

Transformer 是由 Vaswani 等人在 2017 年提出的一种基于注意力机制的深度学习模型,最初用于机器翻译任务。与传统的循环神经网络不同,Transformer 完全依赖自注意力机制来处理输入序列,能够并行处理整个序列,大大提高了计算效率。

2.1.1 自注意力机制

图片

图片

2.2 支持向量机 (SVM)

图片

图片

三、Transformer-SVM 模型构建

3.1 模型整体架构

Transformer-SVM 模型结合了 Transformer 的特征提取能力和 SVM 的回归预测能力

3.2 模型详细设计

3.2.1 输入表示与位置编码

图片

图片

四、结论与展望

本文提出了一种基于 Transformer-SVM 的自行车租赁数量预测模型,该模型结合了 Transformer 的时序特征提取能力和 SVM 的回归预测能力。实验结果表明,Transformer-SVM 模型在自行车租赁数量预测任务中具有显著优势,能够有效提高预测精度和稳定性。

未来的研究工作可以从以下几个方面展开:

  1. 多模态数据融合

    :考虑融合更多类型的数据,如地理位置信息、交通流量数据等,进一步提高预测精度

  2. 模型优化

    :探索更有效的网络结构和训练策略,如引入注意力机制的变体、调整 Transformer 层数和头数等

  3. 不确定性量化

    :引入贝叶斯方法或集成学习技术,量化预测不确定性,为决策提供更全面的信息

  4. 实际应用部署

    :将模型部署到实际系统中,验证其在真实环境下的有效性和实用性

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 代小华.基于支持向量机的天然气管网负荷预测研究[D].西南石油大学,2007.

[2] 刘林.基于LSSVM的短期交通流预测研究与应用[D].西南交通大学,2011.DOI:10.7666/d.y1957260.

[3] 丁维靖,张少萌,裴云涛.基于人工蜂群优化支持向量机的儿童流感疾病的预测模型研究[J].今日药学, 2024(001):034.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值