✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
车辆路径问题与时间窗口(Vehicle Routing Problem with Time Windows,VRPTW)是物流运输领域的经典优化问题,旨在为一组具有时间窗口约束的客户点规划最优的车辆行驶路径,在满足车辆载重、行驶里程等约束条件下,最小化总运输成本 。由于该问题具有 NP - hard 特性,随着问题规模增大,直接求解难度呈指数级增长。交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)作为一种有效的分布式优化算法,通过将复杂问题分解为多个相对简单的子问题进行求解,在处理大规模优化问题上具有显著优势。因此,本方案探索基于 ADMM 对 VRPTW 进行问题分解,以降低求解难度,提高求解效率。
二、VRPTW 与 ADMM 概述
2.1 VRPTW 问题描述
VRPTW 问题通常包含一个配送中心和多个客户点,每辆配送车辆从配送中心出发,依次访问客户点并完成货物配送后返回配送中心。每个客户点存在时间窗口限制,即车辆必须在规定的时间区间内到达该客户点进行服务,否则将产生惩罚成本。此外,车辆还受到载重限制、最大行驶里程限制等约束条件。VRPTW 的目标是合理规划每辆车的行驶路径,在满足所有约束条件的情况下,最小化总运输成本,该成本通常包括车辆行驶距离成本、超时惩罚成本等。
2.2 ADMM 算法原理
ADMM 算法主要用于求解具有可分离结构的凸优化问题,其核心思想是将一个复杂的全局优化问题分解为多个相对简单的子问题,并通过引入辅助变量和拉格朗日乘子,在子问题之间进行信息交换和协调,逐步迭代求解直至收敛到全局最优解或近似最优解。
三、基于 ADMM 的 VRPTW 问题分解
3.1 变量与目标函数定义
3.2 问题分解策略
四、基于 ADMM 的 VRPTW 问题分解求解流程
五、结论
本方案提出了基于 ADMM 的车辆路径问题与时间窗口(VRPTW)的问题分解方案,通过将 VRPTW 问题按照车辆划分为多个子问题,并引入辅助变量和拉格朗日乘子进行协调,利用 ADMM 算法实现子问题的并行求解和协同优化。该方案能够有效降低 VRPTW 问题的求解难度,提高求解效率,为大规模 VRPTW 问题的解决提供了一种新的思路和方法。后续可通过实际案例对该方案进行进一步验证和优化,探索与其他优化算法的结合,以提升方案的实用性和有效性。
⛳️ 运行结果
🔗 参考文献
[1] 黄晓宇.城际跨线市域铁路列车开行方案研究[D].北京交通大学,2022.
[2] 赵千里.基于车载GPS数据的城市交通状态估计和出租车需求预测研究[D].上海交通大学,2016.
[3] 诸葛丽娟.需求不确定的车辆路径鲁棒优化模型与算法研究[D].北京交通大学,2019.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇