💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一、背景与意义: 随着全球贸易的不断发展和物流需求的持续增长,多式联运作为一种高效、综合的运输方式得到了广泛应用。然而,在实际的多式联运过程中,由于受到各种不确定因素的影响,如运输时间的波动、运输成本的变化、天气条件、交通拥堵等,使得确定最优的运输路径变得极具挑战。不确定多式联运的路径优化旨在解决这些不确定性问题,以实现更高效、可靠和经济的货物运输。
二、主要内容:1. 不确定性因素分析:识别多式联运中可能出现的各种不确定因素,包括但不限于运输时间的不确定性、成本的不确定性、运输能力的不确定性等。 分析这些不确定因素的来源、特征和影响程度,为后续的路径优化提供依据。 2. 多式联运网络建模: 构建多式联运的网络模型,包括不同运输方式的节点(如港口、车站、机场等)和连接这些节点的运输线路。 考虑不同运输方式的特点和限制,如运输速度、运输容量、运输成本等。 3. 路径优化方法: 提出适用于不确定多式联运的路径优化方法,这些方法通常结合了数学规划、智能算法、模拟仿真等技术, 目标是在考虑不确定性因素的情况下,最小化运输成本、运输时间、风险等,同时满足货物的交付时间、运输质量等要求。 4. 决策支持系统:开发决策支持系统,帮助物流企业和决策者在不确定环境下进行多式联运路径的选择和优化。 该系统可以提供实时的运输信息、路径推荐、风险评估等功能,提高决策的科学性和准确性。
三、应用领域:1. 国际物流:优化跨国货物运输的路径,提高物流效率,降低成本。 2. 国内物流:适用于国内不同地区之间的货物运输,整合多种运输方式,提高运输的可靠性和灵活性。 3. 供应链管理:作为供应链优化的一部分,确保货物在不同环节之间的高效流转,提高整个供应链的绩效。 总之,不确定多式联运的路径优化对于提高物流效率、降低成本、增强供应链的可靠性具有重要意义,是当前物流领域的一个重要研究方向。
📚2 运行结果
主函数部分代码:
clc;
clear all;
close all;
warning off
%%
noRng=1;
rng('default')
rng(noRng)
%%
global data
data.numN=15; %节点数量
data.Cap_Ts=xlsread("节点处的最大中转运输能力.xlsx");
temp=round(rand(data.numN,3)*10+15)*10;
data.Cap_Ts(:,2:end)=temp;
data.Windows=xlsread("节点的时间窗.xlsx");
data.D=xlsread("节点间距离.xlsx");
data.Cap_Tp=xlsread("节点间最大运输能力.xlsx");
data.T=data.D;
data.v=[76,60,30];
for i=1:length(data.Cap_Tp(:,1))
no1=data.Cap_Tp(i,1);
no2=data.Cap_Tp(i,2);
for j=1:3
if isnan(data.Cap_Tp(i,2+j))
data.D(i,2+j)=nan;
end
end
data.T(i,[3,6,9])=round(data.D(i,3:5)./data.v/1.2);
data.T(i,[4,7,10])=round(data.D(i,3:5)./data.v);
data.T(i,[5,8,11])=round(data.D(i,3:5)./data.v/0.8);
end
data.Windows(:,3)=data.Windows(:,3).*(1-rand(size(data.Windows(:,3))));
data.Windows(:,4)=data.Windows(:,4).*(1+rand(size(data.Windows(:,3))))+10;
data.Windows(:,3:4)=max(0,round(data.Windows(:,3:4)+randn(size(data.Windows(:,3:4)))));
data.Windows(:,5)=max(data.Windows(:,4));
data.CT=[0,3.09,5.23; % 转换成本
3.09,0,26.62;
5.23,26.62,0];
data.TT=[0,1,1; %转换时间
1,0,2;
1,2,0];
data.ET=[0,1.56,6; % 转换碳排放
1.56,0,3.12;
6,3.12,0];
data.q=[120,150,180];
data.E0=[0.796,0.028,0.04];
data.CW=[30,50];
data.S=1;
data.E=15;
data.alpha=0.8;
data.beta1=0.8;
data.beta2=0.8;
data.beta3=0.8;
data.C0=[0.3,0.2,0.1]; %三种运输方式的运输成本
data.weight=[1,1];
data.maxB=100000;
data.maxE=21000;
%%
%%
data.numQ=100;
for ii=1:data.numQ
if rand<0.5
data.q0(ii)=rand*(data.q(2)-data.q(1))+data.q(1);
else
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]孙岩,孙国华,李民,等.区间模糊环境下应急物资多式联运路径优化[J/OL].综合运输:1-9[2024-10-16].https://doi.org/10.20164/j.cnki.cn11-1197/u.20240921.001.
[2]周金龙,张英贵,肖杨,等.不确定时间下多式联运多目标路径优化模型与算法[J/OL].交通运输系统工程与信息:1-17[2024-10-16].http://kns.cnki.net/kcms/detail/11.4520.u.20240913.1050.002.html.