💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一、背景与重要性:在众多领域,如机器人导航、无人驾驶车辆、航空航天等,精确的路径规划和有效的控制是实现高效、安全运行的关键。路径规划非线性控制旨在解决在复杂动态环境下,系统具有非线性特性时的路径规划和控制问题。由于实际系统往往受到各种非线性因素的影响,如摩擦力、空气动力学效应、系统的动力学约束等,传统的线性控制方法难以满足高性能的控制要求,因此非线性控制方法的研究和应用变得至关重要。
二、主要内容:1. 非线性系统建模: - 对需要进行路径规划和控制的系统进行准确的非线性建模。这包括确定系统的状态变量、输入变量和输出变量,以及建立描述系统动态行为的非线性方程。 考虑系统的各种约束条件,如物理限制、运动学约束、动力学约束等。 2. 路径规划算法: 设计适用于非线性系统的路径规划算法。这些算法可以基于不同的原理,如优化算法、搜索算法、基于模型的方法等。 目标是在考虑系统的非线性特性和约束条件下,找到一条从起始状态到目标状态的最优或近似最优路径。路径的优化指标可以包括路径长度、时间、能量消耗、安全性等。 3. 非线性控制方法: 选择和应用适合非线性系统的控制方法。常见的非线性控制方法包括反馈线性化、滑模控制、自适应控制、模糊控制、神经网络控制等。 这些控制方法的目的是使系统能够沿着规划好的路径准确地运动,并在面对外部干扰和系统不确定性时保持稳定性和鲁棒性。 4. 性能评估与优化:对路径规划和非线性控制的性能进行评估,包括路径的准确性、系统的响应时间、稳定性、鲁棒性等方面。 - 根据评估结果,对路径规划算法和控制方法进行优化和改进,以提高系统的整体性能。
三、应用领域:1. 机器人领域:实现机器人在复杂环境中的自主导航和任务执行,如工业机器人的精确运动控制、服务机器人的路径规划等。 2. 无人驾驶车辆:确保无人驾驶汽车在各种路况下安全、高效地行驶,包括路径规划和车辆的动态控制。 3. 航空航天领域:用于飞行器的轨迹规划和控制,提高飞行的安全性和效率。 4. 物流与仓储:优化物流机器人和自动化设备的路径规划和运动控制,提高物流作业的效率和准确性。 总之,路径规划非线性控制是一个具有挑战性和重要应用价值的研究领域,它为解决复杂非线性系统的路径规划和控制问题提供了有效的方法和技术。
📚2 运行结果
主函数部分代码:
clear all
close all
clc
global d0;
global d1;
global T;
global x0;
global x1;
global offset;
global f;
global xshift;
d0 = 2;
d1 = 2;
T = 10;
%Input Vektor for initial position
x0 = zeros(8,1);
x0(1) = 0; %x
x0(2) = 0; %y
x0(3) = 0; %theta0
x0(4) = 0; %theta1
x0(5) = 0; %phi
x0(6) = 1; %xi1
x0(7) = 0; %xi2
x0(8) = 0; %xi3
x1 = zeros(8,1);
x1(1) = 20; %x
x1(2) = 20; %y
x1(3) = -0.3; %theta0
x1(4) = -0.3; %theta1
x1(5) = -0.3; %phi
x1(6) = 0; %xi1
x1(7) = 0; %xi2
x1(8) = 0; %xi3
offset = zeros(5,1);
offset(1) = 0;
offset(2) = 0;
offset(3) = 0;
offset(4) = 0;
offset(5) = 0;
xshift = 1;
f = figure();
Recalculate();
updatePlot(0);
fig = uifigure('Resize','off');
uilabel(fig,'Position',[70,380,50,20],'Text','start');
uilabel(fig,'Position',[20,350,50,20],'Text','X');
u0(1) = uieditfield(fig,'numeric','Position',[70,350,50,20],'Value',x0(1));
uilabel(fig,'Position',[20,320,50,20],'Text','Y');
u0(2) = uieditfield(fig,'numeric','Position',[70,320,50,20],'Value',x0(2));
uilabel(fig,'Position',[20,290,50,20],'Text','Theta1');
u0(3) = uieditfield(fig,'numeric','Position',[70,290,50,20],'Value',x0(3));
uilabel(fig,'Position',[20,260,50,20],'Text','Theta2');
u0(4) = uieditfield(fig,'numeric','Position',[70,260,50,20],'Value',x0(4));
uilabel(fig,'Position',[20,230,50,20],'Text','Phi1');
u0(5) = uieditfield(fig,'numeric','Position',[70,230,50,20],'Value',x0(5));
uilabel(fig,'Position',[250,380,50,20],'Text','offset');
uilabel(fig,'Position',[200,350,50,20],'Text','X');
uof(1) = uieditfield(fig,'numeric','Position',[250,350,50,20],'Value',offset(1));
uilabel(fig,'Position',[200,320,50,20],'Text','Y');
uof(2) = uieditfield(fig,'numeric','Position',[250,320,50,20],'Value',offset(2));
uilabel(fig,'Position',[200,290,50,20],'Text','Theta1');
uof(3) = uieditfield(fig,'numeric','Position',[250,290,50,20],'Value',offset(3));
uilabel(fig,'Position',[200,260,50,20],'Text','Theta2');
uof(4) = uieditfield(fig,'numeric','Position',[250,260,50,20],'Value',offset(4));
uilabel(fig,'Position',[200,230,50,20],'Text','Phi1');
uof(5) = uieditfield(fig,'numeric','Position',[250,230,50,20],'Value',offset(5));
uilabel(fig,'Position',[450,380,50,20],'Text','end');
uilabel(fig,'Position',[400,350,50,20],'Text','X');
u1(1) = uieditfield(fig,'numeric','Position',[450,350,50,20],'Value',x1(1));
uilabel(fig,'Position',[400,320,50,20],'Text','Y');
u1(2) = uieditfield(fig,'numeric','Position',[450,320,50,20],'Value',x1(2));
uilabel(fig,'Position',[400,290,50,20],'Text','Theta1');
u1(3) = uieditfield(fig,'numeric','Position',[450,290,50,20],'Value',x1(3));
uilabel(fig,'Position',[400,260,50,20],'Text','Theta2');
u1(4) = uieditfield(fig,'numeric','Position',[450,260,50,20],'Value',x1(4));
uilabel(fig,'Position',[400,230,50,20],'Text','Phi1');
u1(5) = uieditfield(fig,'numeric','Position',[450,230,50,20],'Value',x1(5));
btn = uibutton(fig,...
'Text','calculate',...
'Position',[230 100 100 20],...
'ButtonPushedFcn', @(btn,event) ButtonPushed(u0,u1,uof));
sld = uislider(fig,...
'Position',[75 55 400 3],...
'Limits',[0 T],...
'ValueChangingFcn',@(sld,event) sliderMoving(event));
function ButtonPushed(u0,u1,uof)
global x0
global offset
global x1
global xshift
xshift = u0(1).Value;
x0(1) = 0;
x0(2) = u0(2).Value;
x0(3) = u0(3).Value;
x0(4) = u0(4).Value;
x0(5) = u0(5).Value;
offset(1) = uof(1).Value;
offset(2) = uof(2).Value;
offset(3) = uof(3).Value;
offset(4) = uof(4).Value;
offset(5) = uof(5).Value;
x1(1) = u1(1).Value - xshift;
x1(2) = u1(2).Value;
x1(3) = u1(3).Value;
x1(4) = u1(4).Value;
x1(5) = u1(5).Value;
Recalculate();
updatePlot(0);
end
function sliderMoving(event)
i = event.Value();
updatePlot(i)
end
function updatePlot(i)
global d1
global ist
global state
global soll
global f
global T
global xshift
clf(f)
index = uint32(length(state(:,1))*i/T);
plot(ist(1,:)+xshift,ist(2,:))
hold on
plot(soll(1,:)+xshift,soll(2,:))
if index==0
index=1;
end
DrawTruck([state(index,1)+xshift;state(index,2)],state(index,3),state(index,5))
DrawTrailor([state(index,1)-d1*cos(state(index,4))+xshift;state(index,2)-d1*sin(state(index,4))],state(index,4))
axis equal
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]薛阳,倪大斌,卢秋红,等.基于PGWO算法的移动机器人路径规划[J/OL].控制与决策,1-7[2024-10-18].https://doi.org/10.13195/j.kzyjc.2024.0647.
[2]杨兰英,李超,邹海锋,等.基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J/OL].系统仿真学报,1-10[2024-10-18].https://doi.org/10.16182/j.issn1004731x.joss.24-0651.