【优化算法】田忌赛马优化算法:从古老智慧到现代算法的华丽转身(Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

“田忌赛马” 的故事家喻户晓,孙膑通过调整马匹出场顺序,以弱胜强。如今,这个古老的智慧策略摇身一变,成为计算机领域的新型优化算法 —— 田忌赛马优化算法(THRO)。它突破传统思维,为解决复杂问题开辟了新路径,在现代科技中展现出独特魅力。

算法灵感:古策略的现代化演绎

THRO 算法的核心,就是将田忌赛马中 “以己之长攻敌之短” 的策略,转化为计算机可执行的逻辑。在算法里,不同的解决方案就像 “马匹”,方案的优劣程度对应 “马的速度”。通过模拟田忌与齐王赛马的过程,算法对不同解决方案进行比较和调整,在不断的 “竞赛” 中,逐步找到最优解,实现问题的优化。

算法原理:模拟赛马的策略博弈

在 THRO 算法中,模拟的 “赛马” 过程包含多种场景和应对策略:

田忌慢马胜齐王慢马:当田忌的最慢马比齐王的慢马还快时,田忌就用这匹慢马出战齐王的慢马,稳拿一分。之后,算法会根据田忌最快的马,以及双方马匹的整体实力情况,来优化田忌的这匹慢马,让它变得更强。同时,齐王的慢马也会尝试追赶,算法同样会更新它的状态。

田忌慢马不敌齐王慢马:要是田忌的慢马比不过齐王的慢马,那就让这匹慢马去对阵齐王的快马,先舍弃这一局。然后,算法会从田忌的马群里随机选一匹马,来改进这匹慢马。而齐王则会根据自己的快马,调整自身快马的状态。

其他场景:在双方慢马实力相当,快马实力有差异的不同情况下,算法也会制定相应策略。比如快马实力强就用快马对战,实力弱就用慢马消耗对方快马,随后根据不同规则对马匹进行更新,以此不断优化解决方案。每一次 “赛马” 结束后,双方的 “马匹” 都会进行 “训练”。通过调整 “训练强度”,让 “马匹” 不断进步,提升整体实力,就像在真实比赛中,马匹通过训练提升速度一样。这样的过程不断重复,算法也在一次次迭代中,越来越接近最优解。

实际应用:多领域的破局利器

THRO 算法在多个领域展现出强大的应用潜力:

资源分配:在云计算领域,服务器资源有限,需要合理分配给不同任务。THRO 算法将任务和服务器资源配置比作 “马匹”,通过模拟竞赛,找到最优的资源分配方案,提高服务器利用率,降低运营成本。

路径规划:智能物流配送中,车辆需要在复杂路网中规划最佳路线。算法把不同路径方案当作 “马匹”,综合考虑路径长度、交通拥堵等因素,通过迭代竞赛,规划出最快配送路径,节省时间和成本。

算法优势:对比传统更胜一筹

与传统优化算法相比,THRO 算法有着显著优势:

种群更新:遗传算法等传统算法,主要通过交叉、变异操作更新解决方案。而 THRO 算法根据不同 “赛马” 场景,灵活调整解决方案,能更好地适应复杂问题。

搜索策略:模拟退火算法通过一定概率接受差的解决方案来避免陷入局部最优。THRO 算法则通过巧妙的 “赛马” 策略,依据方案优劣调整搜索方向,在探索新方案和优化现有方案之间取得更好平衡,搜索效率和精度更高。

未来展望:科技浪潮中的无限可能

随着科技发展,THRO 算法前景广阔。在人工智能领域,它可用于优化深度神经网络参数,提升模型训练效果;在工业制造中,帮助优化生产流程,提高生产效率和产品质量。此外,与量子计算等新兴技术结合,THRO 算法有望突破计算瓶颈,解决更复杂的问题。

从古老的赛马智慧到前沿的优化算法,THRO 算法实现了华丽转身。它不仅为解决复杂问题提供了创新思路,也让我们看到传统文化与现代科技融合的无限可能。期待未来,THRO 算法在更多领域大放异彩,为科技进步注入新动力。

📚2 运行结果

  

部分代码:

unction [BestX,BestFit,His_BestFit]=THRO(FunIndex,MaxIt,nPop0)

nPop=nPop0/2;
[Low,Up,Dim]=FunRange(FunIndex);
Tianji_PopPos=zeros(nPop,Dim);
Tianji_PopFit=zeros(nPop,1);
King_PopPos=zeros(nPop,Dim);
King_PopFit=zeros(nPop,1);

for i=1:nPop
    Tianji_PopPos(i,:)=Low+rand(1,Dim).*(Up-Low);
    Tianji_PopFit(i)=BenFunctions(Tianji_PopPos(i,:),FunIndex,Dim);
    King_PopPos(i,:)=Low+rand(1,Dim).*(Up-Low);
    King_PopFit(i)=BenFunctions(King_PopPos(i,:),FunIndex,Dim);
end

BestFit=inf;
BestX=[];

for i=1:nPop
    if Tianji_PopFit(i)<=BestFit
        BestFit=Tianji_PopFit(i);
        BestX=Tianji_PopPos(i,:);
    end
end

for i=1:nPop
    if King_PopFit(i)<=BestFit
        BestFit=King_PopFit(i);
        BestX=King_PopPos(i,:);
    end
end

His_BestFit=zeros(MaxIt,1);


for It=1:MaxIt
    Rand_nPop0=randperm(nPop0);
    PopPos=[Tianji_PopPos;King_PopPos];
    PopFit=[Tianji_PopFit;King_PopFit];
    Tianji_PopPos=PopPos(Rand_nPop0(1:nPop),:);
    Tianji_PopFit=PopFit(Rand_nPop0(1:nPop));
    King_PopPos=PopPos(Rand_nPop0(nPop+1:nPop0),:);
    King_PopFit=PopFit(Rand_nPop0(nPop+1:nPop0));

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]严家乐,白建波,崔烨彬,等.基于遗传优化的光储换一体站充电调度算法研究[J].太阳能学报,2025,46(06):163-172.DOI:10.19912/j.0254-0096.tynxb.2024-0090.

[2]刘梦雪,刘成.暗通道先验优化的FPGA实时去雾系统[J/OL].计算机测量与控制,1-11[2025-07-03].http://kns.cnki.net/kcms/detail/11.4762.tp.20250702.1701.022.html.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值