【图像配准】让图像精准 “对齐”:基于 FFT 的神奇配准技术(Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在图像领域,不同时间、角度或设备拍摄的图像往往存在位置、角度或大小差异,图像配准就是解决这些问题,让图像精准 “对齐” 的关键技术。今天要介绍的,是一种基于快速傅里叶变换(FFT)的平移、旋转和缩放不变图像配准技术,它能让图像无论如何 “折腾”,都能找到彼此对应的位置,堪称图像领域的 “定位高手”。

快速傅里叶变换(FFT):打开图像分析的 “新大门”

快速傅里叶变换(FFT)是一种高效的数学算法,它能将图像从我们熟悉的空间域转换到频率域。在空间域中,图像表现为一个个像素点组成的画面;而在频率域里,图像则被拆解成不同频率的信号组合,这些频率信息包含了图像的结构、纹理等关键特征。就像把一幅精美的拼图拆开,FFT 能帮助我们看清每一块拼图的独特 “花纹”,为后续分析提供了全新视角。

基于 FFT 实现图像配准的 “三步曲”

1. 提取图像的频率特征

利用 FFT,将待配准的两幅图像分别从空间域转换到频率域。在频率域中,图像的平移、旋转和缩放变化会以特定的规律体现在频率信息上。比如,图像的平移在频率域表现为相位的线性变化,而旋转和缩放则与频率的幅度和相位都有关系。通过分析这些频率特征,我们就能 “读懂” 图像之间的差异。

2. 寻找特征的对应关系

在获取了两幅图像的频率特征后,算法会在频率域中寻找它们之间的对应关系。这就好比在两幅拆解后的 “拼图” 中,找到相同 “花纹” 的拼图块。通过计算频率特征之间的相似度,确定图像在平移、旋转和缩放等方面的具体变换参数。例如,通过特定的公式计算相位相关,来精确找到图像的平移量;利用对数极坐标变换,将图像的旋转和缩放问题转化为更容易处理的平移问题进行求解。

3. 实现图像的精准配准

确定了变换参数后,就可以对其中一幅图像进行相应的平移、旋转和缩放操作,使其与另一幅图像完美 “对齐”。这样,原本存在差异的图像就实现了精准配准,为后续的图像融合、目标识别等应用打下了坚实基础。

技术优势:应对复杂场景的 “得力助手”

这种基于 FFT 的图像配准技术最大的亮点,就是对图像的平移、旋转和缩放具有极强的鲁棒性。无论图像是被随意移动、旋转了一定角度,还是放大缩小,它都能快速、准确地找到图像之间的对应关系,实现配准。而且,FFT 算法本身计算效率高,能够在较短时间内处理大量数据,即使面对高分辨率的复杂图像,也能高效完成配准任务,大大提高了图像处理的效率和准确性。

实际应用:无处不在的 “图像魔法师”

这项技术在很多领域都发挥着重要作用。在医学影像中,医生需要对比患者不同时期或不同设备拍摄的 CT、MRI 图像,基于 FFT 的配准技术能精准对齐图像,帮助医生更清晰地观察病情变化;在遥感领域,它可以将不同时间、不同角度拍摄的卫星图像配准,用于监测城市发展、自然灾害变化等;在计算机视觉的增强现实(AR)应用中,它能确保虚拟图像与现实场景图像准确配准,为用户带来更真实、流畅的体验。

基于 FFT 的平移、旋转和缩放不变图像配准技术,凭借独特的原理和强大的功能,成为了图像处理领域的重要工具。随着技术的不断发展,它还将在更多场景中发挥作用,为我们带来更多惊喜,让图像之间的 “对话” 更加精准、高效。

📚2 运行结果

部分代码:

clear all;
close all;
dbstop if error;
% get ref image
image_ref=imread('img.jpg');
if ndims(image_ref)==3
    image_ref=rgb2gray(image_ref);
end
image_ref_backup=image_ref;
% get the changed image
theta_ch=139;
dx_ch=21;
dy_ch=67;
scaled_ch=1.3;
crop_x=30;
crop_y=16;
crop_width=177;
crop_height=159;
noise_type='poisson';
image_ch=image_ref;
image_ch=imcrop(image_ch,[crop_x,crop_y,crop_width,crop_height]);
image_ch=imtranslate(image_ch,[dx_ch,dy_ch]);
image_ch=imresize(image_ch,scaled_ch);
image_ch=imrotate(image_ch,theta_ch,'bilinear','crop');
if ~strcmp('none',noise_type)
    image_ch=imnoise(image_ch,noise_type);
end
% image_ch=imread('anotherfile');
% image_ch=rgb2gray(image_ch);
image_ch_backup=image_ch;
tic;
[image_ref,image_ch]=zeropad(image_ref,image_ch);

% logpol size
logpol_m=size(image_ref,1);
logpol_n=size(image_ref,2);

% FFT and shift them to the center
fft_ref=fft2(image_ref);
fft_ref=fftshift(fft_ref);
fft_ch=fft2(image_ch);
fft_ch=fftshift(fft_ch);

% Highpass Filtering
mag_ref=highpass_filter(size(image_ref,1),size(image_ref,2)).*abs(fft_ref);
mag_ch=highpass_filter(size(image_ch,1),size(image_ch,2)).*abs(fft_ch);

% Cartesian to Logarithmic Polar Conversion
center=floor((size(image_ref)+1)/2);
[logpol_ref,rho,base]=logpol_transform(mag_ref,center,logpol_m,logpol_n,'bilinear','valid');
center=floor((size(image_ch)+1)/2);
logpol_ch=logpol_transform(mag_ch,center,logpol_m,logpol_n,'bilinear','valid');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]曹婧宜.基于关键点的遥感图像配准与三维重建关键技术研究[D].北京邮电大学,2025.

[2]Kumar R ,Bansal S ,Bansal K R .MRAS: A matching robust adaptive steganography scheme for JPEG images over social networking platforms[J].Signal Processing,2026,238110172-110172.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值