💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
图像去模糊:非盲去模糊实景图像处理中使用点扩散函数(PSF)快速去除模糊的研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
图像去模糊:非盲去模糊实景图像处理中使用点扩散函数(PSF)快速去除模糊的研究
一、引言
在图像采集过程中,由于拍摄设备抖动、被拍摄物体运动、镜头失焦等多种因素,容易导致获取的实景图像出现模糊现象。模糊的图像会丢失大量的细节信息,严重影响图像的质量和后续的分析与应用。非盲去模糊作为图像去模糊的一种重要方式,在已知造成图像模糊的点扩散函数(PSF)的情况下,能够更有针对性地进行处理,从而快速、有效地去除图像中的模糊,恢复图像的清晰细节,具有极高的实用价值。
二、点扩散函数(PSF)概述
- 定义:点扩散函数(PSF)是描述成像系统对理想点光源的响应特性的函数。在理想的成像系统中,一个点光源在图像上会成像为一个清晰的点,而实际的成像系统由于各种干扰因素,点光源的像会扩散成一个模糊的光斑,这个光斑的强度分布就是点扩散函数。PSF能够全面地反映成像系统的模糊特性,不同的模糊原因会产生不同的PSF。例如,由于相机匀速运动造成的模糊,其PSF通常呈现为线性的;而由于镜头失焦导致的模糊,其PSF多为高斯分布形式;大气湍流引起的模糊,其PSF则具有更复杂的随机特性。
- 作用:在非盲去模糊中,PSF是已知的或者可以通过特定的方法进行精确估计。准确获取PSF是保证非盲去模糊效果的前提,PSF的精度直接影响最终的去模糊结果。
三、基于PSF的非盲去模糊原理
- 频域处理原理:将预处理后的模糊图像和已知的PSF分别进行傅里叶变换,转换到频域。在频域中,按照频域除法原理进行计算,得到原始清晰图像的频域估计。为了抑制噪声和避免频域除法中的病态问题,通常会引入正则化项。正则化方法通过在目标函数中加入对图像平滑性或稀疏性的约束,来平衡去模糊效果和噪声抑制。例如,Tikhonov正则化通过加入图像的二阶导数约束来实现平滑,总变分(TV)正则化则通过约束图像的梯度稀疏性,更好地保留图像的边缘信息。
- 空间域处理原理:使用线扩散函数(点扩散函数)进行空间域图像恢复的基本原理是通过将模糊图像与扩散函数的逆函数(或近似逆)进行空间域卷积运算,去除成像系统导致的模糊,从而恢复原始图像。具体步骤包括建立退化模型(图像的模糊过程可建模为原始图像与系统的点扩散函数(PSF)或线扩散函数(LSF)的卷积,并叠加噪声)、明确恢复目标(从模糊图像中估计出原始清晰图像,需要消除PSF的影响和噪声)、进行空间域反卷积(在空间域中,通过设计逆滤波器,如直接逆滤波或约束最小二乘法,将模糊图像与PSF的逆或近似逆进行卷积,抵消原扩散函数的作用)以及噪声抑制(需结合噪声模型,通过正则化等方法平衡去模糊与抑制噪声放大)。
四、基于PSF的非盲去模糊步骤
-
PSF获取与预处理:
- 获取方法:在实际应用中,精确获取PSF可能比较困难。可以通过实验标定、估计或者从理论模型中获得PSF。例如,对于相机抖动造成的模糊,通过分析相机的运动参数,构建对应的线性PSF;对于镜头失焦的图像,其PSF近似为高斯函数,通过估计高斯函数的均值和方差确定PSF。
- 预处理:在进行去模糊处理之前,通常需要对模糊图像进行预处理。预处理的主要目的是去除图像中的噪声,因为噪声在去模糊过程中容易被放大,影响恢复效果。常用的预处理方法包括高斯滤波、中值滤波等。高斯滤波可以平滑图像,减少高频噪声;中值滤波对于椒盐噪声等脉冲噪声具有较好的去除效果。此外,还可以对图像进行归一化处理,将图像的灰度值范围调整到合适的区间,以便于后续的计算和处理。
-
频域转换与计算:将预处理后的模糊图像和已知的PSF分别进行傅里叶变换,转换到频域。在频域中,按照频域除法原理进行计算,得到原始清晰图像的频域估计。同时,引入正则化项来抑制噪声和避免病态问题。
-
逆傅里叶变换与空域转换:将频域中得到的结果进行傅里叶逆变换,转换回空域,得到初步恢复的清晰图像。
-
后处理优化:由于去模糊过程中可能会引入一些伪影或残留的噪声,还需要进行后处理来进一步优化图像质量。后处理方法包括图像锐化、对比度调整、边缘增强等。图像锐化可以增强图像的细节和边缘,使图像更加清晰;对比度调整能够改善图像的视觉效果,使图像的明暗层次更加分明;边缘增强则可以突出图像中的边缘信息,提升图像的整体质量。
五、实验验证与结果分析
-
实验设置:选取一组因相机轻微抖动导致模糊的户外风景图像和一组因镜头失焦造成模糊的室内物体图像进行实验。对于相机抖动造成的模糊图像,通过分析相机的运动参数,构建对应的线性PSF;对于镜头失焦的室内物体图像,其PSF近似为高斯函数,通过估计高斯函数的均值和方差确定PSF。
-
实验结果:
- 相机抖动模糊图像处理结果:采用基于TV正则化的频域去模糊方法进行处理,经过预处理、频域计算、空域转换和后处理等步骤,得到了恢复后的清晰图像。从结果来看,恢复后的图像能够清晰地呈现出远处山脉的轮廓、近处树木的纹理,与原始模糊图像相比,细节信息得到了显著的恢复。
- 镜头失焦模糊图像处理结果:使用Tikhonov正则化方法进行去模糊处理后,原本模糊的物体边缘变得清晰,物体表面的纹理细节也得以显现,图像的整体清晰度得到了极大的提升。
-
结果分析:对比实验结果表明,基于PSF的非盲去模糊方法能够快速、有效地去除实景图像中的模糊,恢复图像的清晰细节,且处理时间明显短于盲去模糊方法。
📚2 运行结果
部分代码:
% for image1
% G = imread('Blurred_image1.jpg');
% radius = 27.3; %radius of PSF
% smooth = 45; %smooth factor, K = (1.09 ^ smooth) / 10000;
% dering = 'On'; %suppressing ring effect
% % for image2
G = imread('Blurred_image2.jpg');
radius = 15.4; %radius of PSF
smooth = 50; %smooth factor, K = (1.09 ^ smooth) / 10000;
dering = 'On'; %suppressing ring effect
F = OOF_deblur(G, radius, smooth, dering);
%save deblurred image
figure,imshow(cat(2,G,F)),title('Out-of-focus Deblur');
imwrite(F,['results\\Deblur_Ra' num2str(radius) 'Sm' num2str(smooth) '.png']);
function F = OOF_deblur(G, radius, smooth, dering)
% perform in every channel
if size(G, 3) == 3
F = G;
for c = 1 : 3
F(:, :, c) = OOF_deblur(G(:, :, c), radius, smooth, dering);
end
else
% generate PSF
psf = zeros(size(G, 1), size(G, 2));
[rows, cols] = size(psf);
psf = insertShape(psf, 'FilledCircle', [(cols + 1)/ 2, (rows + 1)/ 2, radius], 'Color', 'white', 'Opacity', 1) * 255;
psf = psf(:, :, 1);
psf = psf ./ sum(sum(psf));
psf = fftshift(psf);
psf_fft = fft2(psf);
G_fft = fft2(G);
% process the image to prevent ring effect
if strcmp(dering, 'On')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Li Jingjing,Liu Yunfei.图像去模糊系统频域优化设计[J].电子技术应用, 2019, 045(007):107-111,116.
[12]王宇.图像去运动模糊算法研究与实现[D].电子科技大学[2024-06-16].
[3]李振翮,武友新.具有显著异常值的夜间模糊图像非盲去模糊[J].南昌大学学报:工科版, 2020, 42(3):7.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取