【虫情预测】BP神经网络水稻虫情预测【含Matlab源码 3317期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)

⛄一、BP神经网络水稻虫情预测

** 摘要**
农作物虫害一直对庄稼的生长造成了巨大的危害,使作物丰收惨遭损失。为了使害虫得到有效的治理,其关键就是预测害虫发生动态,从而采用准确的措施来减少害虫的发生量,确保庄稼的好丰收。
预测害虫发生量是决定防治庄稼的面积、防治频率及防治范围的依据。随着人工智能技术的快速发展,载加上计算机的辅助,给水稻虫情预测提供了很多新方法,神经网络具有自学习和自适应等特征,并且又具有很强的非线性逼近能力,所以它不用建立复杂的非线性系统的显含关系和数学模型就可以避免许多人为因素的影响,也可以克服传统定量预测方法的许多局限及面临的困难。因此,神经网络在建立合理性和适用性的预测模拟中具有独特的优势,为解决水稻虫害发生量这种非线性系统的预测提供有效的方法。
本次课程设计利用BP神经网络理论,基于MATLAB语言建立了水稻虫害发生量预测系统,确定了发生量与自然因素之间的联系。其中自然因素包括以下四个:日照时长、降雨量、平均气温、最低气温。并通过对黄冈黄州田间水稻2003年到2010年间6月到11月气象数据与虫害发生程度的对应关系来建立模型,对实验结果进行了一系列的分析。

1 绪论
1.1研究的目的及意义

中国是农业大国,搞好农业生产是关系到本国长治久安的重要事。在中国的农作物生产中,作为中国重要的粮食作物之一的水稻,占有举足轻重的地位,根据统计,在1995年,我国稻谷种植面积大约为2978万hm2,占全球稻谷种植面积的19.2%,其中全国稻谷种植面积的29.9%;稻谷作为全国粮食农作物中单个产量最高的作物,为6.31吨/hm2,可以看出,稻谷产量的高迪对全国农业的粮食的产量有重要影响,由此,研究怎样提高稻谷的产量具有深远意义。可是,因为种类、周围环境、栽培体制等变化情况各不相同,使害虫对稻谷的影响日益严重,导致了巨大的经济损失。所以开发出一套能实时预测农作物虫情的系统是非常重要的事情。对农作物病害防治的最好方法就是能及时地准确地预测害虫成长,只有准确的预测虫情的发生周期、覆盖量大小和危害程度,从而做到有目标及时的预防,把农作物害虫的影响控制在最低范围,既不会因害虫的危害而造成伤害,也不会因预防不当导致农药的浪费。

1.2 国内水稻害虫预测的介绍
1.2.1 水稻害虫预测的分类

(一)按预测内容分:
1、发生期预测:预测某种虫害的某生态活虫龄的危害期或出现。
2、发生量预测:需常年坚持搜集资料
3、迁飞害虫预测:根据发生地迁飞害虫的数目、种类、动态特性特点,加上环境变化、天气监测数据,从而做到对害虫迁飞时期、数量、发生区域的预测。
(二)按预测时间长短分:
1、短期预测:预测的期限在二十天左右。
2、中期预测:预测期限为一个季度。
3、长期预测:预测期限为一个季度以上,害虫繁殖生长的时间不同和物种种类决定预测时期的周期。如果繁殖时间速度快、生殖周期短,相应的预测期限就很短,反过来就很长,甚至超过一年。

1.2.2 水稻害虫预测的方法
(一)统计法:
主要思想是根据先验知识来模拟事件的发生规律,对与水稻虫情预测可以根据前几年的观测获得的虫情资料,分别记录每一时期虫情危害程度与气候因素、地质因素的关系,可以将每一时期的影响因素和危害程度设为一个样本,然后根据大量的样本通过神经网络等方法预测虫情的发生量。
(二)实验法:
主要依据各虫害的生物周期作为预测依据进行预测。虫害的生理周期可以通过当前天气预报所提供的气象信息来预测。同时还可以用实验法研究环境、营养、宿敌等因素对繁殖速率和虫害发生量的影响,可以为统计的方法提供样本特性。
(三)观测法:
直接通过观测水稻虫情变化,记录其变化的周期、发育高峰时期、危害程度等。

1.3本文的研究线路
随着人工智能技术的快速发展,给农作物虫情预测提供了很多新方法,神经网络具有自学习和自适应等特征,并且又具有很强的非线性逼近能力,所以它不用建立复杂的非线性系统的显含关系和数学模型就可以避免许多人为因素的影响,也可以克服传统定量预测方法的许多局限及面临的困难。
在实际应用中,利用BP神经网络模型占十之八九。BP网络是神经网络中活跃程度最大、效果最明显的误差反向传播算法。它可以渐进任意一个连续函数,因此对于那些复杂输入的,诸如有很大的未知性、非单一输入、非线性等问题,对于多层BP网络就可以进行分析。
本文主要由以下几部分组成:
(一)掌握水稻虫害的相关知识,搜集水稻虫害发生量与外界因素(日照时数、降
量、平均气温、最低气温)之间关系的资料。
(二)设计BP网络的结构:将BP网络设置为三层。其中输入层有4个节点,分别
代表四个外界自然因素。输出层也有4个节点,分别代表水稻虫情危害的四个程度。利用最速下降算法对水稻虫情进行预测。
(三)学习Matlab语言,利用合适的工具编写BP网络。输入部分样本进行训练。
(四)将余下的样本作为预测样本,检验该BP网络的正确率。

2 BP神经网络的结构组成
BP神经网络结构组成:2输入1输出,5个隐含层的,也称为2-5-1网络结构;
Neural Network:神经网络
Input:输入
Hidden LayerOutput Layer:隐藏层输出层
Output Layer:输出层
Output :输出
在这里插入图片描述
3 BP神经网络训练界面的参数
3.1 BP神经网络算法
Algorithms:算法
Data Division:Random(divider and) 数据划分:随机(除数和)
Training:Levenberg-Marquardt(train lm) 训练:表示训练采用的方法
Performance:Mean Squared Error(mse) 性能:均方误差(mse) 用均方误差衡量网络性能
Calculations:MEX 计算方式:MEX

2.2 BP神经网络进程
Progress 进程
Epoch: 训练次数
Time: 训练时间
Performance: 网络性能
Gradient: 梯度算子
Mu: 误差精度
Validation Checks: 泛化性( 表示BP神经网络在训练过程中,如果均方误差(MSE)连续6次不降反升,则网络停止训练)

3.3 BP神经网络情节
Plots 绘图
Performance 网络性能
Training State 训练阶段参数变化情况
Regression 相关性分析

4 BP神经网络预测步骤
(1)读取数据
(2)设置训练数据和预测数据
(3)训练样本数据归一化
(4)构建BP神经网络
(5)网络参数配置(训练次数,学习速率,训练目标最小误差.等)
(5)BP神经网络训练
(6)测试样本归一化
(7)BP神经网络预测
(8)预测结果反归一化与误差计算
(8)验证集的真实值与预测值误差比较

⛄二、部分源代码

% BP神经网络数据分类

% MatLab程序代码
%% 清空环境变量
clc
clear

%% 训练数据预测数据提取及归一化

%下载虫害数据
load data1 c1
load data2 c2

%合成一个矩阵
data(1:48,:)=c1(1:48,:);
data(49:54,:)=c2(1:6,:);

%% 事实证明BP神经网络在训练数据时与输入数据正负样本的顺序是有关系的
% 如果一开始的一半数据都是正(负)样本,后面的全是负(正)样本,则训练出来的
%效果不好,所以这里需要随机打乱
%从1到48间随机排序
k=rand(1,48);
[m,n]=sort(k);

%输入输出数据
input=data(:,2:5);
output1 =data(:,1);

%把输出从1维变成4维
for i=1:54
switch output1(i)
case 1
output(i,:)=[0 0 0 1];
case 2
output(i,:)=[0 0 1 0];
case 3
output(i,:)=[0 1 0 0];
case 4
output(i,:)=[1 0 0 0];
end
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值