✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
在信号处理领域,多元变分模态分解(Multivariate Variational Mode Decomposition,MVMD)作为一种先进的自适应信号分解方法,能够将复杂的多变量信号分解为多个具有不同特征的模态分量,广泛应用于机械故障诊断、生物医学信号分析、金融时间序列处理等领域 。然而,MVMD 算法在实际应用中面临参数难以确定的问题,如分解模态数等关键参数的选择直接影响分解结果的准确性和有效性。不合适的参数设置可能导致模态混叠、过分解或欠分解等现象,降低信号分解质量,进而影响后续基于信号分解的特征提取、故障诊断等任务的可靠性。
麻雀搜索算法(Sparrow Search Algorithm,SSA)是一种新型的群体智能优化算法,通过模拟麻雀觅食和反捕食行为进行全局寻优,具有较强的全局搜索能力和收敛速度。将 SSA 应用于 MVMD 参数优化,能够利用其高效的寻优特性,自动搜索 MVMD 的最佳参数组合,提升信号分解的精度和可靠性,为信号处理相关领域提供更有效的技术支持。
二、核心技术原理
2.1 麻雀搜索算法(SSA)
SSA 模拟麻雀在觅食过程中的发现者 - 跟随者角色转换和反捕食行为。算法中,麻雀群体分为发现者和跟随者两类。发现者负责在解空间中寻找食物资源丰富的区域,它们具有较大的搜索范围和较高的适应度,按照以下公式更新位置:
2.2 多元变分模态分解(MVMD)
MVMD 是在变分模态分解(VMD)基础上发展而来,用于处理多变量信号。其核心是构建和求解变分模型,将多变量信号分解为多个模态分量。每个模态分量都对应特定的中心频率和带宽,通过优化变分模型,使所有模态分量的估计带宽之和最小化,同时确保分解后的模态分量能够精确重构原始多变量信号 。
具体而言,MVMD 将信号分解问题转化为约束变分问题,通过引入二次惩罚项和拉格朗日乘子,将其转化为无约束变分问题,利用乘子交替方向法(ADMM)进行迭代求解,从而得到各个模态分量及其对应的中心频率,实现对多变量信号的自适应分解。
三、SSA 优化 MVMD 的过程
3.1 确定优化参数与目标函数
在 SSA-MVMD 中,将 MVMD 的关键参数(如分解的模态数
K
等)作为 SSA 算法搜索空间中的变量。目标函数的设计是优化的关键,通常以信号分解后各模态分量的合理性和有效性为依据。例如,可选择分解后各模态分量的峭度之和作为目标函数,峭度能够反映信号的冲击特性,峭度之和越大,说明分解后的模态分量对信号中冲击特征的提取越充分,分解效果越好 。目标函数表达式为:
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类