SHAP分析!Transformer-BiLSTM组合模型SHAP分析,模型可解释不在发愁

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在深度学习不断发展的当下,Transformer 和 BiLSTM 在序列数据处理领域展现出强大实力。Transformer 凭借自注意力机制,能高效捕捉长距离依赖关系;BiLSTM 通过双向结构,对序列的上下文信息进行深度挖掘。将二者组合,在自然语言处理、时间序列预测等任务中可实现更精准的分析与预测 。然而,这类复杂模型如同 “黑箱”,其决策过程难以直观理解,限制了在医疗、金融等对模型可解释性要求高的场景中的应用。SHAP(SHapley Additive exPlanations)分析作为一种先进的模型可解释性工具,能够量化每个输入特征对模型输出的贡献,为揭开 Transformer-BiLSTM 组合模型的 “神秘面纱” 提供了有效途径。

二、核心技术原理

2.1 Transformer 与 BiLSTM 模型原理

Transformer 的核心自注意力机制打破了传统循环神经网络的顺序处理限制,通过将输入映射为查询

算注意力权重,从不同角度捕捉序列特征,有效提取全局依赖关系 。多头注意力机制进一步增强了特征提取能力,经过层归一化和前馈神经网络处理后,输出编码特征。

BiLSTM 由两个方向相反的 LSTM 组成,LSTM 通过遗忘门、输入门和输出门解决了传统 RNN 的梯度问题,能够有效处理长序列数据。BiLSTM 的双向结构使其既能学习过去信息对当前状态的影响,又能捕捉未来信息的潜在作用,全面挖掘序列的时序依赖关系 。

2.2 SHAP 分析原理

SHAP 分析基于博弈论中的 Shapley 值概念,将模型预测视为一场博弈,每个输入特征都是参与者,SHAP 值衡量的是某个特征加入特征组合时对模型输出的平均边际贡献 。对于深度学习模型,通常采用近似算法计算 SHAP 值,如 DeepSHAP。它通过对模型进行局部线性近似,利用采样和回归的方式估算每个特征的 SHAP 值,从而清晰地展示每个特征对模型决策的影响程度和方向。

三、Transformer-BiLSTM 组合模型构建与训练

3.1 模型架构设计

Transformer-BiLSTM 组合模型主要分为三个部分:输入层、特征提取层和输出层。输入层对原始数据进行预处理和编码;特征提取层先由 Transformer 提取序列的全局特征和长距离依赖关系,再将其输出送入 BiLSTM,进一步挖掘局部时序特征;输出层根据具体任务需求,将 BiLSTM 的输出通过全连接层和激活函数,得到最终预测结果 。

3.2 模型训练

在训练过程中,根据任务类型选择合适的损失函数,如交叉熵损失函数用于分类任务,均方误差损失函数用于回归任务。采用随机梯度下降及其变种算法(如 Adam、Adagrad 等)作为优化器,通过反向传播算法更新模型参数,不断调整模型权重,使损失函数最小化,提高模型在训练数据上的拟合能力和在测试数据上的泛化能力 。同时,可采用正则化、Dropout 等技术防止模型过拟合。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
SHAP (SHapley Additive exPlanations) 是一种用于机器学习模型解释性的工具,它提供了一种直观的方式来理解特征对模型预测的影响程度。对于像PyTorch的LSTM(长短期记忆网络)这样的深度神经网络,我们通常需要将其包裹在一个可以计算梯度和特征重要性的函数中。 下面是一个简单的例子,展示了如何使用SHAP库对基于`torch.nn.LSTM`的模型进行解释的Python代码: ```python import torch from torchtext.data import Field from torchtext.datasets import IMDB from transformers import LSTMTokenizer, BertModel from shap import Explainer # 首先,加载数据并预处理 tokenizer = LSTMTokenizer.from_pretrained('bert-base-chinese') TEXT = Field(tokenize=tokenizer.tokenize, batch_first=True) train_data, valid_data, test_data = IMDB.splits(TEXT) # 创建LSTM模型 model = BertModel.from_pretrained('bert-base-chinese', output_hidden_states=True) # 使用BERT作为基础模型 model = model[0] # 获取实际的LSTM部分,去掉Transformer头部分 # 将模型转换为TensorFlow或PyTorch风格,以便于SHAP使用 explainer = shap.DeepExplainer(model.cpu().eval(), train_data.text[:10]) # 选择一个样本进行解释 input_ids = tokenizer(train_data.text[0], padding='max_length', truncation=True).input_ids input_ids = torch.tensor([input_ids]).cuda() if torch.cuda.is_available() else input_ids # 计算SHAPshap_values = explainer.shap_values(input_ids) # 输出每个词的重要性排名 word_importances = [(token, value) for token, value in zip(tokenizer.decode(input_ids[0]), shap_values[0])] word_importances.sort(key=lambda x: -x[1]) # 按照重要性降序排列 # 打印前几个最重要的词 print(f"Top 5 important words: {word_importances[:5]}") ``` 在这个例子中,我们首先创建了一个基于BERT的基础LSTM模型,并将其转换为可以接受Shap解释的形式。然后,我们选择了某个文本样本,计算了其每个单词对模型预测贡献的SHAP值,并按照重要性排序显示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值