✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在深度学习不断发展的当下,Transformer 和 BiLSTM 在序列数据处理领域展现出强大实力。Transformer 凭借自注意力机制,能高效捕捉长距离依赖关系;BiLSTM 通过双向结构,对序列的上下文信息进行深度挖掘。将二者组合,在自然语言处理、时间序列预测等任务中可实现更精准的分析与预测 。然而,这类复杂模型如同 “黑箱”,其决策过程难以直观理解,限制了在医疗、金融等对模型可解释性要求高的场景中的应用。SHAP(SHapley Additive exPlanations)分析作为一种先进的模型可解释性工具,能够量化每个输入特征对模型输出的贡献,为揭开 Transformer-BiLSTM 组合模型的 “神秘面纱” 提供了有效途径。
二、核心技术原理
2.1 Transformer 与 BiLSTM 模型原理
Transformer 的核心自注意力机制打破了传统循环神经网络的顺序处理限制,通过将输入映射为查询
算注意力权重,从不同角度捕捉序列特征,有效提取全局依赖关系 。多头注意力机制进一步增强了特征提取能力,经过层归一化和前馈神经网络处理后,输出编码特征。
BiLSTM 由两个方向相反的 LSTM 组成,LSTM 通过遗忘门、输入门和输出门解决了传统 RNN 的梯度问题,能够有效处理长序列数据。BiLSTM 的双向结构使其既能学习过去信息对当前状态的影响,又能捕捉未来信息的潜在作用,全面挖掘序列的时序依赖关系 。
2.2 SHAP 分析原理
SHAP 分析基于博弈论中的 Shapley 值概念,将模型预测视为一场博弈,每个输入特征都是参与者,SHAP 值衡量的是某个特征加入特征组合时对模型输出的平均边际贡献 。对于深度学习模型,通常采用近似算法计算 SHAP 值,如 DeepSHAP。它通过对模型进行局部线性近似,利用采样和回归的方式估算每个特征的 SHAP 值,从而清晰地展示每个特征对模型决策的影响程度和方向。
三、Transformer-BiLSTM 组合模型构建与训练
3.1 模型架构设计
Transformer-BiLSTM 组合模型主要分为三个部分:输入层、特征提取层和输出层。输入层对原始数据进行预处理和编码;特征提取层先由 Transformer 提取序列的全局特征和长距离依赖关系,再将其输出送入 BiLSTM,进一步挖掘局部时序特征;输出层根据具体任务需求,将 BiLSTM 的输出通过全连接层和激活函数,得到最终预测结果 。
3.2 模型训练
在训练过程中,根据任务类型选择合适的损失函数,如交叉熵损失函数用于分类任务,均方误差损失函数用于回归任务。采用随机梯度下降及其变种算法(如 Adam、Adagrad 等)作为优化器,通过反向传播算法更新模型参数,不断调整模型权重,使损失函数最小化,提高模型在训练数据上的拟合能力和在测试数据上的泛化能力 。同时,可采用正则化、Dropout 等技术防止模型过拟合。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类