✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
随着全球对清洁能源需求的不断增长,光伏发电作为一种重要的可再生能源发电方式,其装机容量持续攀升。然而,光伏功率受光照强度、温度、湿度、云层覆盖等多种气象因素影响,具有显著的随机性和波动性 。这种不确定性给电力系统的稳定运行、调度安排以及电力市场交易带来了巨大挑战。传统的光伏功率点预测方法只能给出单一的预测值,无法反映预测结果的不确定性,难以满足电力系统实际运行需求。因此,开展光伏功率概率预测,获取包含不确定性信息的预测区间,对提高电力系统可靠性、优化资源配置具有重要意义。
时序卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)在时间序列分析领域展现出强大的特征提取与建模能力,自适应带宽核密度估计(ABKDE)则能有效处理数据分布,实现概率预测。将这些技术有机结合,提出 TCN-GRU-Attention-ABKDE 模型,为光伏功率概率预测提供了新的思路与方法。
二、核心技术原理
2.1 时序卷积网络(TCN)
TCN 是一种基于卷积神经网络(CNN)的改进结构,专门用于处理时间序列数据。它通过因果卷积(Causal Convolution)确保当前时刻的输出仅依赖于过去时刻的输入,符合时间序列的因果关系;扩张卷积(Dilated Convolution)则通过设置不同的扩张率,在不增加参数数量的情况下,扩大网络的感受野,使其能够捕捉到更长时间跨度的信息 。TCN 通过多层卷积层的堆叠,逐步提取时间序列的局部特征和全局特征,在处理具有长期依赖关系的时间序列数据时表现出色。
2.2 门控循环单元(GRU)
GRU 是循环神经网络(RNN)的一种变体,通过引入更新门和重置门,有效解决了传统 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据 。更新门决定了前一时刻的状态有多少信息被保留到当前时刻,重置门则控制了当前输入与前一时刻状态的结合程度。GRU 通过门控机制,选择性地记忆和遗忘信息,能够挖掘时间序列中的时序依赖关系,对光伏功率这种具有动态变化特征的数据建模具有良好效果。
2.3 注意力机制(Attention)
注意力机制模拟人类注意力的分配方式,使模型能够在处理输入序列时,自适应地聚焦于重要的信息部分。在光伏功率预测中,不同的气象因素在不同时刻对光伏功率的影响程度不同,注意力机制可以根据输入数据的特征,为每个时间步和每个特征分配不同的注意力权重,从而突出关键信息,提高模型对复杂关系的捕捉能力 。常见的注意力机制包括自注意力(Self-Attention)、多头注意力(Multi-Head Attention)等,能够从多个角度对输入进行加权求和,增强模型的表达能力。
2.4 自适应带宽核密度估计(ABKDE)
核密度估计(KDE)是一种非参数估计方法,用于估计随机变量的概率密度函数。传统的 KDE 需要预先设定固定的带宽,带宽的选择对估计结果影响较大,不合适的带宽可能导致过平滑或欠平滑问题。ABKDE 通过某种自适应算法(如交叉验证、Silverman 经验法则改进等),根据数据的局部特征自动调整带宽,能够更准确地拟合数据的真实分布,从而实现更可靠的概率预测和预测区间估计 。在光伏功率概率预测中,ABKDE 可以根据历史光伏功率数据及其相关影响因素,估计出未来光伏功率的概率分布,进而得到包含不确定性信息的预测区间。
三、TCN-GRU-Attention-ABKDE 模型构建与预测流程
3.1 模型架构设计
TCN-GRU-Attention-ABKDE 模型主要由输入层、特征提取层、注意力层、预测层和概率估计层组成。
- 输入层:将与光伏功率相关的多变量数据(如光照强度、温度、湿度、风速等气象数据,以及历史光伏功率数据)进行预处理,包括数据清洗、归一化等操作,然后输入模型。
- 特征提取层:由 TCN 和 GRU 串联组成。TCN 首先对输入数据进行卷积运算,提取时间序列的局部和全局特征;GRU 进一步挖掘特征中的时序依赖关系,输出包含丰富时序信息的特征向量。
- 注意力层:采用多头注意力机制,对 GRU 输出的特征向量进行加权处理,突出对光伏功率预测重要的特征和时间步,增强模型对关键信息的捕捉能力。
- 预测层:通过全连接层将注意力层输出的特征向量映射到预测空间,得到光伏功率的点预测值。
- 概率估计层:利用 ABKDE 对预测误差进行建模,根据点预测值和误差分布,估计光伏功率的概率密度函数,进而计算出不同置信水平下的预测区间。
3.2 预测流程
- 数据准备:收集历史光伏功率数据及其相关的气象数据,对数据进行预处理,划分训练集、验证集和测试集。
- 模型训练:使用训练集数据对 TCN-GRU-Attention-ABKDE 模型进行训练,通过反向传播算法和优化器(如 Adam)调整模型参数,最小化损失函数(如均方误差损失函数结合分位数损失函数,用于同时优化点预测和区间预测)。在训练过程中,利用验证集对模型进行评估,调整超参数,防止模型过拟合。
- 预测与区间估计:将测试集数据输入训练好的模型,得到光伏功率的点预测值;然后基于 ABKDE 对预测误差进行分析,估计光伏功率的概率分布,计算出不同置信水平(如 90%、95%)下的预测区间。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类