光伏功率概率预测!TCN-GRU-Attention-ABKDE自适应带宽核密度估计多变量回归区间预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、研究背景

随着全球对清洁能源需求的不断增长,光伏发电作为一种重要的可再生能源发电方式,其装机容量持续攀升。然而,光伏功率受光照强度、温度、湿度、云层覆盖等多种气象因素影响,具有显著的随机性和波动性 。这种不确定性给电力系统的稳定运行、调度安排以及电力市场交易带来了巨大挑战。传统的光伏功率点预测方法只能给出单一的预测值,无法反映预测结果的不确定性,难以满足电力系统实际运行需求。因此,开展光伏功率概率预测,获取包含不确定性信息的预测区间,对提高电力系统可靠性、优化资源配置具有重要意义。

时序卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)在时间序列分析领域展现出强大的特征提取与建模能力,自适应带宽核密度估计(ABKDE)则能有效处理数据分布,实现概率预测。将这些技术有机结合,提出 TCN-GRU-Attention-ABKDE 模型,为光伏功率概率预测提供了新的思路与方法。

二、核心技术原理

2.1 时序卷积网络(TCN)

TCN 是一种基于卷积神经网络(CNN)的改进结构,专门用于处理时间序列数据。它通过因果卷积(Causal Convolution)确保当前时刻的输出仅依赖于过去时刻的输入,符合时间序列的因果关系;扩张卷积(Dilated Convolution)则通过设置不同的扩张率,在不增加参数数量的情况下,扩大网络的感受野,使其能够捕捉到更长时间跨度的信息 。TCN 通过多层卷积层的堆叠,逐步提取时间序列的局部特征和全局特征,在处理具有长期依赖关系的时间序列数据时表现出色。

2.2 门控循环单元(GRU)

GRU 是循环神经网络(RNN)的一种变体,通过引入更新门和重置门,有效解决了传统 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据 。更新门决定了前一时刻的状态有多少信息被保留到当前时刻,重置门则控制了当前输入与前一时刻状态的结合程度。GRU 通过门控机制,选择性地记忆和遗忘信息,能够挖掘时间序列中的时序依赖关系,对光伏功率这种具有动态变化特征的数据建模具有良好效果。

2.3 注意力机制(Attention)

注意力机制模拟人类注意力的分配方式,使模型能够在处理输入序列时,自适应地聚焦于重要的信息部分。在光伏功率预测中,不同的气象因素在不同时刻对光伏功率的影响程度不同,注意力机制可以根据输入数据的特征,为每个时间步和每个特征分配不同的注意力权重,从而突出关键信息,提高模型对复杂关系的捕捉能力 。常见的注意力机制包括自注意力(Self-Attention)、多头注意力(Multi-Head Attention)等,能够从多个角度对输入进行加权求和,增强模型的表达能力。

2.4 自适应带宽核密度估计(ABKDE)

核密度估计(KDE)是一种非参数估计方法,用于估计随机变量的概率密度函数。传统的 KDE 需要预先设定固定的带宽,带宽的选择对估计结果影响较大,不合适的带宽可能导致过平滑或欠平滑问题。ABKDE 通过某种自适应算法(如交叉验证、Silverman 经验法则改进等),根据数据的局部特征自动调整带宽,能够更准确地拟合数据的真实分布,从而实现更可靠的概率预测和预测区间估计 。在光伏功率概率预测中,ABKDE 可以根据历史光伏功率数据及其相关影响因素,估计出未来光伏功率的概率分布,进而得到包含不确定性信息的预测区间。

三、TCN-GRU-Attention-ABKDE 模型构建与预测流程

3.1 模型架构设计

TCN-GRU-Attention-ABKDE 模型主要由输入层、特征提取层、注意力层、预测层和概率估计层组成。

  • 输入层:将与光伏功率相关的多变量数据(如光照强度、温度、湿度、风速等气象数据,以及历史光伏功率数据)进行预处理,包括数据清洗、归一化等操作,然后输入模型。
  • 特征提取层:由 TCN 和 GRU 串联组成。TCN 首先对输入数据进行卷积运算,提取时间序列的局部和全局特征;GRU 进一步挖掘特征中的时序依赖关系,输出包含丰富时序信息的特征向量。
  • 注意力层:采用多头注意力机制,对 GRU 输出的特征向量进行加权处理,突出对光伏功率预测重要的特征和时间步,增强模型对关键信息的捕捉能力。
  • 预测层:通过全连接层将注意力层输出的特征向量映射到预测空间,得到光伏功率的点预测值。
  • 概率估计层:利用 ABKDE 对预测误差进行建模,根据点预测值和误差分布,估计光伏功率的概率密度函数,进而计算出不同置信水平下的预测区间。

3.2 预测流程

  1. 数据准备:收集历史光伏功率数据及其相关的气象数据,对数据进行预处理,划分训练集、验证集和测试集。
  1. 模型训练:使用训练集数据对 TCN-GRU-Attention-ABKDE 模型进行训练,通过反向传播算法和优化器(如 Adam)调整模型参数,最小化损失函数(如均方误差损失函数结合分位数损失函数,用于同时优化点预测和区间预测)。在训练过程中,利用验证集对模型进行评估,调整超参数,防止模型过拟合。
  1. 预测与区间估计:将测试集数据输入训练好的模型,得到光伏功率的点预测值;然后基于 ABKDE 对预测误差进行分析,估计光伏功率的概率分布,计算出不同置信水平(如 90%、95%)下的预测区间。

⛳️ 运行结果

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值