✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球能源结构加速向清洁化、低碳化转型的大背景下,社区综合能源系统(Community Integrated Energy System,CIES)凭借其对电、气、热等多种能源协同管理的优势,成为实现能源高效利用与可持续发展的重要载体。然而,CIES 中多元主体(如能源供应商、用户、储能运营商等)利益诉求各异,传统集中式优化方法难以平衡各方利益并实现系统最优运行。为此,本文引入主从博弈理论,提出基于主从博弈的社区综合能源系统分布式协同优化运行策略,旨在通过构建科学的博弈模型,实现各主体间的利益协调与系统整体效益的最大化。
一、社区综合能源系统结构与运行特性分析
1.1 系统组成架构
社区综合能源系统通常涵盖能源生产、转换、存储和消费等多个环节。能源生产侧包含分布式电源(如太阳能光伏、风力发电机)、小型燃气轮机等;能源转换设备有热电联产机组(CHP)、电转气(P2G)装置、热泵等,可实现不同能源形式的相互转换;储能设备如电池储能系统、储热罐、储气罐等,用于调节能源供需的时空差异;能源消费侧则面向社区内的居民、商业及工业用户,满足多样化的用能需求。各部分通过能源网络(如电网、热网、气网)相互连接,形成复杂的多能耦合系统。
1.2 运行特性与挑战
CIES 运行具有多能互补、时空耦合、主体多元等特性。多能互补使得系统可根据能源价格、资源条件灵活调整能源生产与转换方式,提高能源利用效率;但时空耦合特性导致能源的生产、转换和消费在时间与空间上存在复杂的匹配关系,增加了运行调度的难度。此外,系统中不同主体(如能源供应商追求利润最大化,用户期望用能成本最低)利益目标不一致,如何协调各方利益,实现系统整体优化运行,成为亟待解决的关键问题。
二、基于主从博弈的模型构建
2.1 主从博弈框架设定
在社区综合能源系统中,设定能源供应商作为主导者(主方),用户和储能运营商等作为跟随者(从方)。主方基于市场信息和系统运行状态,制定能源生产计划与销售策略;从方根据主方策略以及自身用能需求、成本约束等,优化自身的用能行为和储能充放电策略。双方在博弈过程中相互影响、相互制约,通过不断调整策略,寻求均衡解。
2.2 主方模型构建
主方(能源供应商)以最大化自身利润为目标,其目标函数包括能源销售收益、政府补贴收入,同时扣除能源生产与转换成本、设备运维成本等。约束条件涵盖能源生产设备的功率限制、能源输出总量限制、设备运行时间约束等,以确保能源生产的可行性与安全性。例如,对于太阳能光伏和风力发电设备,需考虑光照强度、风速等自然条件对发电功率的限制;对于热电联产机组,要满足热 - 电耦合关系约束。
2.3 从方模型构建
从方中,用户以最小化自身用能成本为目标,成本包括购能费用、参与需求响应的补偿或惩罚费用等。用户可根据主方的能源价格策略,调整用电、用热、用气时间与用量,参与需求响应项目(如负荷转移、削减高峰负荷)。储能运营商则以最大化储能设备的收益为目标,通过优化储能设备的充放电策略,在能源价格低谷时充电、高峰时放电,获取差价收益,同时考虑储能设备的充放电功率限制、容量限制以及充放电效率等约束条件。
2.4 博弈均衡求解
采用经典的 Nash 均衡理论求解主从博弈模型。通过迭代算法,主方先给出初始策略,从方根据主方策略计算最优响应策略;主方再根据从方的响应策略调整自身策略,如此反复,直至双方策略不再改变,达到 Nash 均衡状态,此时的策略即为系统的优化运行策略。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 卢锦玲,赵增辉,胡兴华,等.计及光伏波动性的主动配电网双层有功无功协调优化[J].电力系统及其自动化学报[2025-06-10].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇