【电力系统】基于 V2G 技术的电动汽车实时调度策略附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在全球 “双碳” 目标的驱动下,电动汽车作为新能源交通的重要载体,保有量呈爆发式增长。然而,电动汽车大规模无序充电会给电力系统带来负荷峰谷差扩大、电网稳定性下降等问题。车网互动(Vehicle-to-Grid,V2G)技术通过双向功率流动,使电动汽车不仅作为用电负荷,还能化身移动储能单元参与电网调度,成为缓解电网压力、促进新能源消纳的关键技术。本文聚焦基于 V2G 技术的电动汽车实时调度策略,旨在平衡电网运行需求与车主利益,提升电力系统的灵活性与经济性。

一、V2G 技术与电动汽车调度现状

1.1 V2G 技术原理与优势

V2G 技术借助双向充放电设备,实现电动汽车动力电池与电网之间的电能双向流动。当电网负荷高峰时,电动汽车可向电网放电,充当分布式电源;在负荷低谷或电价低廉时段,车辆进行充电,起到削峰填谷的作用。相较于传统单向充电模式,V2G 技术不仅能降低电网建设成本,还能提高新能源发电消纳能力,例如在风电、光伏大发时段,可利用电动汽车储存多余电能,避免弃风弃光现象。同时,车主可通过参与 V2G 服务获取经济收益,实现多方共赢。

1.2 现有调度面临的挑战

当前电动汽车调度存在诸多难题。一方面,电动汽车用户出行需求具有随机性和不确定性,其充电时间、地点和电量需求难以精准预测;另一方面,电网运行状态实时变化,新能源发电的间歇性导致电网对电动汽车调度的实时性要求极高。此外,现有的调度策略多侧重于电网利益或车主利益单一维度,缺乏兼顾双方利益的有效机制,且在通信延迟、数据安全等技术问题上仍存在短板,制约了 V2G 技术大规模应用。

二、基于 V2G 技术的电动汽车实时调度策略构建

2.1 调度目标设定

调度策略以电网稳定性、经济性和用户满意度为综合目标。对于电网侧,目标是最小化系统峰谷差,降低电网运行成本,提高新能源消纳比例;对车主而言,需确保其出行需求得到满足,同时最大化参与 V2G 服务的收益。通过建立多目标函数,平衡电网与车主的利益诉求,例如将电网峰谷差、新能源消纳量、车主收益等指标纳入目标函数,并赋予不同权重,以适应不同的调度需求。

2.2 实时数据采集与处理

构建基于物联网和大数据的实时数据采集平台,获取电动汽车的位置、剩余电量(SOC)、预计停留时间、出行计划等信息,同时实时监测电网的负荷、电价、新能源发电功率等数据。利用边缘计算技术对采集到的数据进行预处理,降低数据传输压力,提高数据处理效率。通过机器学习算法对用户出行行为进行预测,结合电网运行状态,为调度决策提供准确的数据支撑。

2.3 调度模型建立

采用模型预测控制(MPC)方法构建实时调度模型。以滚动优化的方式,根据当前时刻的电网和车辆状态,预测未来一段时间内的电网负荷、新能源发电和车辆用电需求,制定最优的电动汽车充放电策略。考虑电动汽车电池的充放电功率限制、寿命损耗成本,以及电网的功率平衡、电压稳定等约束条件,通过求解优化问题,确定每辆电动汽车在各个时刻的充放电功率。

2.4 双向通信与协调机制

建立电网与电动汽车之间的双向通信网络,采用 5G、Wi-Fi 等通信技术,确保数据实时、准确传输。电网侧将调度指令(如充放电功率、时间)发送给电动汽车,车主可根据自身需求选择接受或拒绝调度。同时,电动汽车将自身状态信息反馈给电网,实现信息交互与动态协调。为保障通信安全,采用区块链技术对数据进行加密和验证,防止数据篡改和隐私泄露。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值