✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对风电功率预测的复杂性与不确定性,提出基于减法优化算法(SABO)优化的 CNN-BiGUR-Attention 风电功率预测模型。SABO 算法通过模拟物质 “减法” 过程中的优化机制,对 CNN-BiGUR-Attention 模型的参数进行全局寻优,改善模型对风电数据特征的提取与预测能力。实验结果表明,该优化模型在均方误差、平均绝对误差等关键指标上优于传统模型,为实现高精度风电功率预测提供了新的技术路径。
一、引言
随着全球能源结构向清洁化、低碳化转型,风电在电力供应体系中的地位愈发重要。然而,风电功率受风速、风向、气温、气压等气象因素以及风机设备状态的综合影响,呈现出显著的非线性、波动性和随机性特点,这给电网调度、电力市场交易和能源规划带来巨大挑战。准确的风电功率预测能够帮助电网合理安排发电计划、降低运行成本、提升新能源消纳能力,是保障电力系统安全稳定运行的关键环节。
传统的风电功率预测方法如物理模型、统计模型在处理复杂风电数据时存在局限性,难以满足实际需求。近年来,深度学习凭借强大的特征提取和模式识别能力,成为风电功率预测的研究热点。CNN-BiGUR-Attention 模型结合了卷积神经网络(CNN)强大的局部特征提取能力、双向门控更新单元(BiGUR)对时间序列数据的长短期依赖关系捕捉能力,以及注意力机制(Attention)对关键信息的聚焦能力,在风电功率预测中展现出一定优势。但该模型存在参数众多、易陷入局部最优的问题,影响预测精度。减法优化算法(SABO)作为一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等特点,为优化 CNN-BiGUR-Attention 模型提供了新的思路。本研究将 SABO 算法与 CNN-BiGUR-Attention 模型相结合,旨在提升风电功率预测的准确性和可靠性。
二、相关理论与方法
2.1 减法优化算法(SABO)
减法优化算法(SABO)是一种受物质 “减法” 过程启发而提出的元启发式优化算法。在自然界中,物质通过去除冗余部分,实现结构优化和性能提升。SABO 算法模拟这一过程,将优化问题的解空间视为 “物质”,通过不断去除解中的 “冗余” 部分,逐步逼近最优解。
在 SABO 算法中,每个候选解代表优化问题的一个可能解,算法通过迭代更新候选解来寻找最优解。其主要步骤如下:
- 初始化种群:随机生成一定数量的候选解,构成初始种群,每个候选解对应 CNN-BiGUR-Attention 模型的一组参数。
- 计算适应度值:以风电功率预测误差(如均方误差 MSE)作为适应度函数,计算每个候选解对应的适应度值。适应度值越低,表示该候选解对应的模型参数在风电功率预测中的表现越好。
- 减法操作与更新:SABO 算法通过 “减法” 操作对候选解进行更新。具体而言,算法根据一定的规则,从候选解中去除部分参数或调整参数值,模拟物质去除冗余部分的过程。在去除操作后,对候选解进行评估,如果新的候选解适应度值更优,则保留该解;否则,保留原解。通过不断重复减法操作和评估过程,候选解逐渐向最优解靠近。
- 迭代优化:重复步骤 2 和步骤 3,不断更新候选解的适应度值和参数,直到满足预设的终止条件,如达到最大迭代次数或适应度值收敛到一定范围。最终得到的最优候选解对应的参数即为优化后的模型参数。
2.2 CNN-BiGUR-Attention 模型
- CNN 模块:CNN 模块通过卷积层和池化层对风电数据进行特征提取。卷积层利用不同大小的卷积核扫描数据,捕捉风速变化趋势、功率波动模式等局部时空特征;池化层则对卷积层输出进行降维,减少计算量的同时保留关键特征信息。
- BiGUR 模块:BiGUR 由两个方向相反的门控更新单元组成,能够从正向和反向两个方向学习风电数据的时间序列特征,有效捕捉数据中的长短期依赖关系,增强模型对风电功率变化趋势的预测能力。
- Attention 模块:Attention 机制根据风电数据中不同特征对功率预测的重要程度,自动分配权重,聚焦关键信息,抑制噪声干扰,提升模型预测精度。通过计算各特征的权重,模型能够更关注对风电功率影响较大的因素,如风速、风向等,从而提高预测准确性。
三、基于 SABO 优化的 CNN-BiGUR-Attention 风电功率预测模型构建
3.1 模型结构设计
基于 SABO 优化的 CNN-BiGUR-Attention 风电功率预测模型主要由数据预处理模块、CNN 模块、BiGUR 模块、Attention 模块、SABO 优化模块和预测输出模块组成。数据预处理模块对原始风电数据和气象数据进行清洗、归一化等操作,为后续模型训练提供高质量数据;CNN、BiGUR 和 Attention 模块依次对数据进行特征提取和处理;SABO 优化模块根据模型预测误差,对 CNN-BiGUR-Attention 模型的参数进行优化;最后,预测输出模块输出风电功率预测值。
3.2 SABO 优化过程
将 CNN-BiGUR-Attention 模型的参数(如卷积层权重、BiGUR 门控参数、全连接层权重等)编码为 SABO 算法中的候选解。在 SABO 优化过程中,以模型预测的均方误差作为适应度函数,通过不断进行减法操作和评估,更新候选解的参数,寻找使适应度值最小的参数组合,即最优模型参数。经过 SABO 算法优化后,CNN-BiGUR-Attention 模型的参数得到调整,使其能够更好地适应风电数据特征,提高预测性能。
四、结论与展望
本研究成功将减法优化算法(SABO)应用于 CNN-BiGUR-Attention 模型,实现了风电功率预测精度的提升。SABO 算法通过模拟物质减法过程的优化机制,有效改善了模型参数,增强了模型对风电数据特征的提取和预测能力。然而,研究仍存在改进空间,如进一步优化 SABO 算法的参数设置,提高算法的搜索效率和稳定性;探索将更多影响风电功率的因素(如风机叶片状态、地形地貌等)纳入模型,提升模型在复杂环境下的适应性。未来,随着研究的深入,基于 SABO 优化的 CNN-BiGUR-Attention 模型有望在风电功率预测领域发挥更大作用,为电力系统稳定运行提供更有力支持。
⛳️ 运行结果
🔗 参考文献
[1] 张玉典,王宇驰.基于减法优化器算法优化的ELM电力负荷预测度量研究[J].现代工业经济和信息化, 2024, 14(9):124-126.
[2] 薛家祥,王凌云.基于SABO-GRU-Attention的锂电池SOC估计[J].电源技术, 2024, 48(11):2169-2173.
[3] 闫宏亮,杨泽心,王镇涛,等.基于SABO算法的PMSM弱磁和MTPA控制方法[J].科学技术与工程, 2024, 24(30):13005-13012.DOI:10.12404/j.issn.1671-1815.2307274.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇