信息论初级——信源概述——2020-11-11

这篇博客介绍了信息论中离散信源的数学模型,包括离散无记忆信源、离散平稳信源和二维离散平稳信源。重点讲解了离散信源的熵及其性质,并探讨了马尔可夫信源的概念,强调了马尔可夫信源的时齐性和遍历性特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信息论初级——信源概述

内容:
一、信源的数学模型以及分类
二、离散信源信息熵以及其性质
三、随机波形信源
四、信源的冗余度

   关于连续与离散的一些思考:我觉得,连续的本质是离散,即万物皆离散。在定义中,连续的例子有语音信号、热噪音信号等,这些例子如果以生活的角度去看,确实是连续的,因为你发音的时候喉咙是一直在震动的,发出的声音是“连续”的,但是如果将你发出声音的单位时间无限缩小,其实你发出的声音是一帧一帧的,就跟电影录像带一样。**
      
1.离散信源的信息熵以及其性质:
      ——自信息:某个随机变量所携带的信息量
              I(x)= - log P(x)  log默认是以二为底的对数;p(x)为先验概率。
              在事件发生前,I(x)代表事件 包含的不确定性。事件发生后,I(x)代表事件所提供的信息量。

     ——信息熵:H(x)平均自信息量,单位是bit/符号;还包括联合熵与条件熵
     
     基本性质:
                       1.离散信息熵是非负的,非负性。
                       2.对称性,即调换信源内信息元的位置后所得的信息熵仍旧不变。
                       3.确定性,即当信源中有一信息元基本确定会出现时,其他信息元基本不会出现,故可得该信源的信息熵为0。
                       4.扩展性,信源的取值数增多时,如若增多的这些值对应的概率很小,则信源的熵不变。
                       5.可加性,H(xy)=H(x)+H(y);条件:x与y相互独立。
                       6.强可加性,H(xy)=H(x)+H(y/x); 条件:x与y相互关联。
                       7.递增性,如果信源中有一信息元被分裂成为了多个信息元,且该信源所有信息元概率和仍然为1,那么该信源的熵增大,且熵的增量等于由于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值