信息论初级——信源概述
内容:
一、信源的数学模型以及分类
二、离散信源信息熵以及其性质
三、随机波形信源
四、信源的冗余度
关于连续与离散的一些思考:我觉得,连续的本质是离散,即万物皆离散。在定义中,连续的例子有语音信号、热噪音信号等,这些例子如果以生活的角度去看,确实是连续的,因为你发音的时候喉咙是一直在震动的,发出的声音是“连续”的,但是如果将你发出声音的单位时间无限缩小,其实你发出的声音是一帧一帧的,就跟电影录像带一样。**
1.离散信源的信息熵以及其性质:
——自信息:某个随机变量所携带的信息量
I(x)= - log P(x) log默认是以二为底的对数;p(x)为先验概率。
在事件发生前,I(x)代表事件 包含的不确定性。事件发生后,I(x)代表事件所提供的信息量。
——信息熵:H(x)平均自信息量,单位是bit/符号;还包括联合熵与条件熵
基本性质:
1.离散信息熵是非负的,非负性。
2.对称性,即调换信源内信息元的位置后所得的信息熵仍旧不变。
3.确定性,即当信源中有一信息元基本确定会出现时,其他信息元基本不会出现,故可得该信源的信息熵为0。
4.扩展性,信源的取值数增多时,如若增多的这些值对应的概率很小,则信源的熵不变。
5.可加性,H(xy)=H(x)+H(y);条件:x与y相互独立。
6.强可加性,H(xy)=H(x)+H(y/x); 条件:x与y相互关联。
7.递增性,如果信源中有一信息元被分裂成为了多个信息元,且该信源所有信息元概率和仍然为1,那么该信源的熵增大,且熵的增量等于由于