Python 自动获取摄像头图像并识别

本文介绍了一种利用Python自动捕获摄像头图像的方法,并通过调用百度智能云的OCR接口实现图像中文字的自动识别。文章提供了完整的代码示例,包括设置图像保存路径、显示图像及识别结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码来源
改手动为自动获取一张图像

识别使用的是百度智能云免费接口

# 获取图像
import cv2
import os
import datetime

cap = cv2.VideoCapture(0)
print("初始化成功!")

savedpath =r'd:\\py\\'
isExists = os.path.exists(savedpath)
if not isExists:
    os.makedirs(savedpath)
    print('path of %s is build' % (savedpath))
else:
    print('path of %s already exist and rebuild' % (savedpath))

shoot = True
while(shoot):
    ret, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    cv2.imshow('test',frame)
    savedname = 'example' + '.jpg'
    cv2.waitKey(1)
    cv2.imwrite(savedpath + savedname, frame)
    cv2.namedWindow("Image")
    cv2.imshow("Image", frame)
    # cv2.waitKey(0)
    cv2.destroyAllWindows()
    shoot = False

cap.release()
cv2.destroyAllWindows()


# 图像识别
from aip import AipOcr

""" 你的 APPID AK SK """
APP_ID = '******'
API_KEY = '******'
SECRET_KEY = '******'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

""" 读取图片 """
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()

filePath = r'D:\\py\\example.jpg'
image = get_file_content(filePath)

options = {'+words':True}
# 通用高精度识别

result = client.basicAccurate(image, options)
# 输出识别结果的内容
resultList = ((result['words_result']))
for i in resultList:
    for j in i.values():
        print(j)

# 输出:
'''
{'log_id': 8469051079957259546, 'words_result_num': 1, 'words_result': [{'words': '800'}]}
800
'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值